Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7 1 ELEC 5270-001/6270-001(Fall 2006)...

46
Fall 2006, Sep. 26, Fall 2006, Sep. 26, Oct. 3 Oct. 3 ELEC 5270-001/6270-001 Lect ELEC 5270-001/6270-001 Lect ure 7 ure 7 1 ELEC 5270-001/6270-001(Fall ELEC 5270-001/6270-001(Fall 2006) 2006) Low-Power Design of Electronic Circuits Low-Power Design of Electronic Circuits Dynamic Power: Glitch Elimination Dynamic Power: Glitch Elimination Vishwani D. Agrawal Vishwani D. Agrawal James J. Danaher Professor James J. Danaher Professor Department of Electrical and Computer Department of Electrical and Computer Engineering Engineering Auburn University, Auburn, AL 36849 Auburn University, Auburn, AL 36849 http://www.eng.auburn.edu/~vagrawal http://www.eng.auburn.edu/~vagrawal [email protected] [email protected]
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    217
  • download

    2

Transcript of Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7 1 ELEC 5270-001/6270-001(Fall 2006)...

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 11

ELEC 5270-001/6270-001(Fall ELEC 5270-001/6270-001(Fall 2006)2006)

Low-Power Design of Electronic CircuitsLow-Power Design of Electronic Circuits

Dynamic Power: Glitch EliminationDynamic Power: Glitch Elimination

Vishwani D. AgrawalVishwani D. AgrawalJames J. Danaher ProfessorJames J. Danaher Professor

Department of Electrical and Computer Department of Electrical and Computer EngineeringEngineering

Auburn University, Auburn, AL 36849Auburn University, Auburn, AL 36849http://www.eng.auburn.edu/~vagrawalhttp://www.eng.auburn.edu/~vagrawal

[email protected]@eng.auburn.edu

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 22

Components of PowerComponents of Power

DynamicDynamic Signal transitionsSignal transitions

Logic activityLogic activity GlitchesGlitches

Short-circuitShort-circuit StaticStatic

LeakageLeakage

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 33

Power of a TransitionPower of a Transition

VVDDDD

GroundGround

CL

R

R

Dynamic Power

= CLVDD2/2 + Psc

Vi

Vo

isc

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 44

Dynamic PowerDynamic Power

Each transition of a gate consumes Each transition of a gate consumes CV CV 22/2./2.

Methods of power saving:Methods of power saving: Minimize load capacitancesMinimize load capacitances

Transistor sizingTransistor sizing Library-based gate selectionLibrary-based gate selection

Reduce transitionsReduce transitions Logic designLogic design Glitch reductionGlitch reduction

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 55

Glitch Power ReductionGlitch Power Reduction Design a digital circuit for minimum Design a digital circuit for minimum

transient energy consumption by transient energy consumption by eliminating hazardseliminating hazards

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 66

Theorem 1Theorem 1 For correct operation with For correct operation with

minimum energy consumption, a minimum energy consumption, a Boolean gate must produce no Boolean gate must produce no more than more than oneone event per transition. event per transition.

Output logic state changesOne transition is necessary

Output logic state unchangedNo transition is necessary

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 77

Event PropagationEvent Propagation

2 4 61

1 3

5

3

10

0

0

2

2

Path P1

P2

Path P3

Single lumped inertial delay modeled for each gatePI transitions assumed to occur without time skew

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 88

Inertial Delay of an InverterInertial Delay of an Inverter

dHL dLH

dHL+dLH

d = ──── 2

Vin

Vout

time

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 99

Multi-Input GateMulti-Input Gate

Delay = d

A

B

C

A

B

C d d Hazard or glitch

DPD

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1010

Balanced Path DelaysBalanced Path Delays

Delay = d

A

B

C

A

B

C d No glitch

DPD

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1111

Glitch Filtering by InertiaGlitch Filtering by Inertia

Delay ≥ DPD

A

B

C

A

B

C

d =DPD

Filtered glitch

DPD

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1212

Given that events occur at the input of a gate with Given that events occur at the input of a gate with inertial delay inertial delay dd at times, at times, tt11 ≤ . . . ≤ ≤ . . . ≤ ttnn , the number , the number of events at the gate output cannot exceedof events at the gate output cannot exceed

Theorem 2Theorem 2

min ( min ( n n , 1 + ), 1 + )ttnn – t – t11

----------------dd

ttnn - t - t11

tt11 t t22 t t33 t tnn timetime

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1313

Minimum Transient DesignMinimum Transient Design

Minimum transient energy condition for a Minimum transient energy condition for a Boolean gate:Boolean gate:

| t| tii - t - tjj | < d | < d

Where tWhere tii and t and tjj are arrival times of input are arrival times of input

events and d is the inertial delay of gateevents and d is the inertial delay of gate

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1414

Balanced Delay MethodBalanced Delay Method All input events arrive simultaneouslyAll input events arrive simultaneously Overall circuit delay not increasedOverall circuit delay not increased Delay buffers may have to be insertedDelay buffers may have to be inserted

11 111111 11

111111

33

11 11

No increase in critical path delay

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1515

Hazard Filter MethodHazard Filter Method Gate delay is made greater than maximum input Gate delay is made greater than maximum input

path delay differencepath delay difference No delay buffers needed No delay buffers needed (least transient energy)(least transient energy) Overall circuit delay may increaseOverall circuit delay may increase

11 111111 11

33111111 11

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1616

Linear ProgramLinear Program

Variables: gate and buffer delaysVariables: gate and buffer delays Objective: minimize number of buffersObjective: minimize number of buffers Subject to: overall circuit delay Subject to: overall circuit delay

constraint for all input-output pathsconstraint for all input-output paths Subject to: minimum transient Subject to: minimum transient

condition for all multi-input gatescondition for all multi-input gates

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1717

Variables for Full Adder Variables for Full Adder add1badd1b

1111

11 11

1111

11

11

11

0000

00

0000

00

00 0000

0000

00

00

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1818

Variables for Full Adder Variables for Full Adder add1badd1b

Gate delay variables dGate delay variables d4 4 . . . d. . . d1212 Buffer delay variables dBuffer delay variables d15 15 . . . . . .

dd2929

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 1919

Objective FunctionObjective Function Ideal: minimize the number of non-zero Ideal: minimize the number of non-zero

delay buffers (non-linear ILP):delay buffers (non-linear ILP): Delay of ith buffer = Delay of ith buffer = xxi i ddi i , , where where xxi i = [0, 1]= [0, 1]

Minimize Minimize ΣΣ xxi i buffersbuffers

An approximated LP:An approximated LP: Delay of ith buffer = Delay of ith buffer = ddii

Minimize Minimize ΣΣ ddi i buffersbuffers

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2020

Specify Critical Path DelaySpecify Critical Path Delay

1111

11 11

1111

11

11

11

0000

00

0000

00

00 0000

0000

00

00

Sum of delays on critical path ≤ Sum of delays on critical path ≤ maxdelmaxdel maxdel = specified critical path delaymaxdel = specified critical path delay

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2121

Multi-Input Gate ConditionMulti-Input Gate Condition

11

11 11

11

0000

00

0000

00

d1d1

d2d2

dd

d1 - d2 ≤ dd1 - d2 ≤ dd2 - d1 ≤ dd2 - d1 ≤ d

dd

dd

|d1 - d2| ≤ d ≡|d1 - d2| ≤ d ≡

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2222

Results: 1-Bit AdderResults: 1-Bit Adder

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2323

AMPL Solution: AMPL Solution: maxdel maxdel == 66

2211

11 11

1111

22

11

22

22

11

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2424

AMPL Solution: AMPL Solution: maxdel maxdel == 77

2222

11 11

1111

11

11

33

22

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2525

AMPL Solution: AMPL Solution: maxdel maxdel ≥≥ 1111

2233

11 11

1111

44

33

55

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2626

Original 1-Bit AdderOriginal 1-Bit Adder

Colo

r co

des

for

num

ber

of

transi

tions

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2727

Optimized 1-Bit AdderOptimized 1-Bit Adder

Colo

r co

des

for

num

ber

of

transi

tions

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2828

Results: 1-Bit AdderResults: 1-Bit AdderSimulated over all possible vector transitions

•Average power = optimized/unit delay

= 244 / 308 = 0.792

•Peak power = optimized/unit delay

= 6 / 10 = 0.60

Power Savings :

Peak = 40 %

Average = 21 %

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 2929

ReferencesReferences E. Jacobs and M. Berkelaar, “Using Gate Sizing to Reduce E. Jacobs and M. Berkelaar, “Using Gate Sizing to Reduce

Glitch Power,” Glitch Power,” Proc. ProRISC/IEEE Workshop on Circuits, Proc. ProRISC/IEEE Workshop on Circuits, Systems and Signal ProcessingSystems and Signal Processing, Nov. 1996, pp. 183-188; , Nov. 1996, pp. 183-188; also also Int. Workshop on Logic SynthesisInt. Workshop on Logic Synthesis, May 1997., May 1997.

V. D. Agrawal, “Low-Power Design by Hazard Filtering,” V. D. Agrawal, “Low-Power Design by Hazard Filtering,” Proc. 10th Int. Conf. VLSI DesignProc. 10th Int. Conf. VLSI Design, Jan. 1997, pp. 193-197., Jan. 1997, pp. 193-197.

V. D. Agrawal, M. L. Bushnell, G. Parthasarathy, and R. V. D. Agrawal, M. L. Bushnell, G. Parthasarathy, and R. Ramadoss, “Digital Circuit Design for Minimum Transient Ramadoss, “Digital Circuit Design for Minimum Transient Energy and a Linear Programming Method,” Energy and a Linear Programming Method,” Proc. 12th Proc. 12th Int. Conf. VLSI DesignInt. Conf. VLSI Design, Jan. 1999, pp. 434-439., Jan. 1999, pp. 434-439.

Last two papers are available at website Last two papers are available at website http://www.eng.auburn.edu/~vagrawalhttp://www.eng.auburn.edu/~vagrawal

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3030

A LimitationA Limitation

Constraints are written by Constraints are written by path path

enumeration.enumeration. Since number of paths in a circuit can be Since number of paths in a circuit can be

exponential in circuit size, the exponential in circuit size, the

formulation is infeasible for large circuits.formulation is infeasible for large circuits. Example: c880 has 6.96M constraints.Example: c880 has 6.96M constraints.

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3131

Timing WindowTiming Window Define two Define two timing windowtiming window variablesvariables per per

gate output:gate output: ttii Earliest time of signal transition at gate i. Earliest time of signal transition at gate i.

TTii Latest time of signal transition at gate i. Latest time of signal transition at gate i.t1, T1

tn, Tn

.

.

.

ti, Ti

Ref: T. Raja, Master’s Thesis, Rutgers Univ., 2002

i

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3232

Linear ProgramLinear Program

Gate variables dGate variables d4 4 . . . d. . . d1212 Buffer Variables dBuffer Variables d15 15 . . . d. . . d2929 Corresponding window variables tCorresponding window variables t4 4 . . . t. . . t2929 and T and T4 4 . . . . T. . . . T2929..

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3333

Multiple-Input Gate ConstraintsMultiple-Input Gate Constraints

For Gate 7:For Gate 7:

TT77 ≥ ≥ TT55 + d + d77;; t t77 < t < t55 + d + d77;; dd77 > T > T77 - t - t77;;

TT77 ≥≥ T T66 + d + d77;; t t77 < t < t66 + d + d77;;

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3434

Single-Input Gate Single-Input Gate ConstraintsConstraints

T16 + d19 = T19 ;

t16 + d19 = t19 ;

Buffer 19:

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3535

Overall Delay ConstraintsOverall Delay Constraints

TT1111 ≤≤ maxdelaymaxdelay

TT1212 ≤≤ maxdelaymaxdelay

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3636

Comparison of ConstraintsComparison of Constraints

Number of gates in circuit

Nu

mb

er o

f co

nst

rain

ts

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3737

Estimation of PowerEstimation of Power Circuit is simulated by an event-Circuit is simulated by an event-

driven simulator for both optimized driven simulator for both optimized and un-optimized gate delays.and un-optimized gate delays.

All transitions at a gate are counted All transitions at a gate are counted as Events[gate].as Events[gate].

Power consumed Power consumed Events[gate] x Events[gate] x # of fanouts.# of fanouts.

Ref: “Effects of delay model on peak Ref: “Effects of delay model on peak power estimation of VLSI circuits,” power estimation of VLSI circuits,” Hsiao, Hsiao, et alet al. (. (ICCAD`97 ICCAD`97 ).).

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3838

Results: 4-Bit ALUResults: 4-Bit ALU

maxdelaymaxdelay Buffers insertedBuffers inserted

77 55

1010 22

1212 11

1515 00

Power Savings :

Peak = 33 %, Average = 21 %

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 3939

Power Calculation in SpicePower Calculation in SpiceVDDVDD

GroundGround

CircuitLarge C

Open at t = 0

Ref.: M. Shoji, CMOS Digital Circuit Technology, Prentice Hall, 1988, p. 172.

t

En

erg

y,

E(t

)E(t) = -- C VDD 2 - -- C V 2 ~ C VDD ( VDD - V )

1 1

2 2

V

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 4040

Power Dissipation of ALU4Power Dissipation of ALU4E

ner

gy

in n

an

ojo

ule

s

0

1

2

3

4

5

6

7

0.0 0.5 1.0 1.5 2.0microseconds

Original ALUdelay ~ 3.5ns

Minimum energy ALUdelay ~ 10ns

1 micron CMOS, 57 gates, 14 PI, 8 PO100 random vectors simulated in Spice

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 4141

F0 Output of ALU4F0 Output of ALU4S

ign

al A

mp

litu

de

, Vo

lts

0

5

0 40 80 120 160nanoseconds

Original ALU, delay = 7 units (~3.5ns)

Minimum energy ALU, delay = 21 units (~10ns)

5

0

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 4242

Benchmark CircuitsBenchmark CircuitsCircuit

C432

C880

C6288

c7552

Maxdel.(gates)

1734

2448

4794

4386

No. ofBuffers

9566

6234

294120

366111

Average

0.720.62

0.680.68

0.400.36

0.380.36

Peak

0.670.60

0.540.52

0.360.34

0.340.32

Normalized Power

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 4343

Physical DesignPhysical Design

Gatel/w Gate

l/w

Gatel/w

Gatel/w

Gate delay modeled as a linear function of gate size, total load capacitance, and fanout gate sizes (Berkelaar and Jacobs, 1996).

Layout circuit with some nominal gate sizes.

Enter extracted routing delays in LP as constants and solve for gate delays.

Change gate sizes as determined from a linear system of equations.

Iterate if routing delays change.

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 4444

Power Dissipation of Power Dissipation of ALU4ALU4

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 4545

ReferencesReferences R. Fourer, D. M. Gay and B. W. Kernighan, R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling AMPL: A Modeling

Language for Mathematical ProgrammingLanguage for Mathematical Programming, South San Francisco: The , South San Francisco: The Scientific Press, 1993.Scientific Press, 1993.

M. Berkelaar and E. Jacobs, “Using Gate Sizing to Reduce Glitch M. Berkelaar and E. Jacobs, “Using Gate Sizing to Reduce Glitch Power,” Power,” Proc. ProRISC WorkshopProc. ProRISC Workshop, Mierlo, The Netherlands, Nov. , Mierlo, The Netherlands, Nov. 1996, pp. 183-188.1996, pp. 183-188.

V. D. Agrawal, “Low Power Design by Hazard Filtering,” V. D. Agrawal, “Low Power Design by Hazard Filtering,” Proc. 10Proc. 10thth Int’l Conf. VLSI DesignInt’l Conf. VLSI Design, Jan. 1997, pp. 193-197., Jan. 1997, pp. 193-197.

V. D. Agrawal, M. L. Bushnell, G. Parthasarathy and R. Ramadoss, V. D. Agrawal, M. L. Bushnell, G. Parthasarathy and R. Ramadoss, “Digital Circuit Design for Minimum Transient Energy and Linear “Digital Circuit Design for Minimum Transient Energy and Linear Programming Method,” Programming Method,” Proc. 12Proc. 12thth Int’l Conf. VLSI Design Int’l Conf. VLSI Design, Jan. 1999, , Jan. 1999, pp. 434-439.pp. 434-439.

M. Hsiao, E. M. Rudnick and J. H. Patel, “Effects of Delay Model in M. Hsiao, E. M. Rudnick and J. H. Patel, “Effects of Delay Model in Peak Power Estimation of VLSI Circuits,” Proc. ICCAD, Nov. 1997, pp. Peak Power Estimation of VLSI Circuits,” Proc. ICCAD, Nov. 1997, pp. 45-51.45-51.

T. Raja, T. Raja, A Reduced Constraint Set Linear Program for Low Power A Reduced Constraint Set Linear Program for Low Power Design of Digital CircuitsDesign of Digital Circuits, Master’s Thesis, Rutgers Univ., New , Master’s Thesis, Rutgers Univ., New Jersey, 2002.Jersey, 2002.

Fall 2006, Sep. 26, Oct. 3Fall 2006, Sep. 26, Oct. 3 ELEC 5270-001/6270-001 Lecture 7ELEC 5270-001/6270-001 Lecture 7 4646

ConclusionConclusion Glitch-free design through LP: constraint-set is linear in the size of Glitch-free design through LP: constraint-set is linear in the size of

the circuit.the circuit.

LP solution:LP solution:

Eliminates glitches at all gate outputs,Eliminates glitches at all gate outputs,

Holds I/O delay within specification, andHolds I/O delay within specification, and

Combines path-balancing and hazard-filtering to minimize the Combines path-balancing and hazard-filtering to minimize the

number of delay buffers.number of delay buffers.

Linear constraint set LP produces results exactly identical to the LP Linear constraint set LP produces results exactly identical to the LP

requiring exponential constraint-set.requiring exponential constraint-set.

Results show peak power savings up to 68% and average power Results show peak power savings up to 68% and average power

savings up to 64%.savings up to 64%.