Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of...

49
Copyright Agrawal, 2007 Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9 ELEC6270 Spring 15, Lecture 9 1 ELEC 5270/6270 Spring 2015 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Low-Power Design of Electronic Circuits Circuits Memory and Multicore Memory and Multicore Design Design Vishwani D. Agrawal Vishwani D. Agrawal James J. Danaher Professor James J. Danaher Professor Dept. of Electrical and Computer Engineering Dept. of Electrical and Computer Engineering Auburn University, Auburn, AL 36849 Auburn University, Auburn, AL 36849 [email protected] http://www.eng.auburn.edu/~vagrawal/COURSE/E6270_Spr15co urse.html

Transcript of Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of...

Page 1: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 11

ELEC 5270/6270 Spring 2015ELEC 5270/6270 Spring 2015Low-Power Design of Electronic CircuitsLow-Power Design of Electronic Circuits

Memory and Multicore Design Memory and Multicore Design

Vishwani D. AgrawalVishwani D. AgrawalJames J. Danaher ProfessorJames J. Danaher Professor

Dept. of Electrical and Computer EngineeringDept. of Electrical and Computer EngineeringAuburn University, Auburn, AL 36849Auburn University, Auburn, AL 36849

[email protected]://www.eng.auburn.edu/~vagrawal/COURSE/E6270_Spr15course.html

Page 2: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 22

Memory ArchitectureMemory Architecture

Word 0Word 1Word 2

M bits

Storage cell

Word N-2Word N-1

Input-Output (M bits)

N w

ord

s

S0

SN-1

Word 0Word 1Word 2

M bits

Storage cell

Word N-2Word N-1

Input-Output (M bits)

N w

ord

s

S0

SN-1

A0

A1

.AK-1

Dec

oder

K a

ddre

ss li

nes

K = log2NN = 2K

Page 3: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 33

Memory OrganizationMemory Organization

Sense amplifiers/drivers

Column decoder

AL

AL+1

AK–1

Storage cell

Word line

Bit line

Input-Output (M bits)

A0

AL–1

2K – L

M.2L

K –

L b

it ro

wa

ddre

ss

L bit column address

N = 2K

M-bit words

Ro

w d

eco

der

Page 4: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 44

An SRAM CellAn SRAM Cell

bit bit

VDD

WL

BL BL

Page 5: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 55

Read OperationRead Operation

bit bit

VDD

WL

BL BL

1. Precharge to VDD

2. WL = Logic 1

3. Sense amplifier converts BL swing to logic level

Page 6: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 66

Precharge CircuitPrecharge Circuit

bit bit

VDDWL

BL BLDiff. sense ampl.

VDDVDD PC

Equalizationdevice

Page 7: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 77

Reading 1 from CellReading 1 from Cell

Pre

char

ge

time

WL

BL

BL

Sense ampl. output

Pulsed to save bit line charge

Page 8: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 88

Write Operation, 1Write Operation, 1→ 0→ 0

bit bit

VDD

WL

BL BL

011. Set BL = 0, BL = 1

2. WL = 1

Page 9: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 99

Cell Array Power ManagementCell Array Power Management

Smaller transistorsSmaller transistorsLow supply voltageLow supply voltageLower voltage swing (0.1V – 0.3V for Lower voltage swing (0.1V – 0.3V for

SRAM)SRAM)Sense amplifier restores the full voltage swing Sense amplifier restores the full voltage swing

for outside use.for outside use.Power-down and sleep modesPower-down and sleep modes

Page 10: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1010

Sense AmplifierSense Amplifier

bit bit

SEor CLK

Sense ampl. enable:Low when bit lines are precharged and equalized

VDD

Full voltage swing output

Page 11: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1111

Sense Amplifier: PrechargeSense Amplifier: Precharge

bit=1 bit=1

SE=0

VDD

0VDD

OFF

ON ON

Page 12: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1212

Sense Amplifier: Reading 0Sense Amplifier: Reading 0

bit=1 – ∆ bit=1

SE=1

VDD

10

ON

OFF ON

Page 13: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1313

Sense Amplifier: Reading 1Sense Amplifier: Reading 1

bit=1bit=1– ∆

SE=1

VDD

01

ON

OFFON

Page 14: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1414

Block-Oriented ArchitectureBlock-Oriented Architecture

A single cell array may contain 64 Kbits to A single cell array may contain 64 Kbits to 256 Kbits.256 Kbits.

Larger arrays become slow and consume Larger arrays become slow and consume more power.more power.

Larger memories are block oriented.Larger memories are block oriented.

Page 15: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1515

Hierarchical OrganizationHierarchical Organization

Global data bus

Global amplifier/driver

I/O

Block 0 Block 1 Block P-1

Controlcircuitry

Block selector

Row addr.

Column addr.

Block addr.

Page 16: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1616

Power SavingPower SavingBlock-oriented memoryBlock-oriented memory

Lengths of local word and bit lines are kept Lengths of local word and bit lines are kept small.small.

Block address is used to activate the addressed Block address is used to activate the addressed block.block.

Unaddressed blocks are put in power-saving Unaddressed blocks are put in power-saving mode:mode: sense amplifier and row/column decoders are sense amplifier and row/column decoders are

disabled.disabled.Cell array is put in power-saving mode.Cell array is put in power-saving mode.

Page 17: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1717

Static PowerStatic Power

0.0 0.6 1.2 1.8Supply voltage

1.3μ

1.1μ

900n

700n

500n

300n

100n

0.13μ CMOS

0.18μ CMOS

8-kbit SRAM

7x

incr

eas

e

Lea

kag

e c

urr

ent

(A

mp

ere

s)

Page 18: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1818

Power Saving ModesPower Saving Modes

Power-down: Disconnect supply. Data is Power-down: Disconnect supply. Data is not retained. Must be refreshed before not retained. Must be refreshed before use. Example, caches.use. Example, caches.

Increasing thresholds by body biasing: Increasing thresholds by body biasing: Negative bias on nonactive cells reduces Negative bias on nonactive cells reduces leakage.leakage.

Sleep mode:Sleep mode: Insert resistance in leakage path; retain data.Insert resistance in leakage path; retain data.Lower supply voltage.Lower supply voltage.

Page 19: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 1919

Adding Resistance in Leakage PathAdding Resistance in Leakage Path

SRAM cell

SRAM cell

SRAM cell

GND

VDD

sleep

sleep

Low-threshold transistor

VSS.int

VDD.int

Page 20: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2020

Lowering Supply VoltageLowering Supply Voltage

SRAM cell

SRAM cell

SRAM cell

GND

VDD

sleep

VDDL ≥ 100mV for 0.13μ CMOS

Sleep = 1, data retention mode

Page 21: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2121

Parallelization of MemoriesParallelization of Memories

instr. A instr. C instr. E

.

.

.

f/2

Mem 1

instr. B instr. D instr. F

.

.

.

f/2

Mem 2

MUXf/2 0 1

Power = C’ f/2 VDD2

C. Piguet, “Circuit and Logic Level Design,” pp. 124-125 inW. Nebel and J. Mermet (Eds.), Low Power Design in DeepSubmicron Electronics, Springer, 1997.

Page 22: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2222

ReferencesReferences

K. Itoh, K. Itoh, VLSI Memory Chip DesignVLSI Memory Chip Design, Springer-, Springer-Verlag, 2001.Verlag, 2001.

J. M. Rabaey, A. Chandrakasan and B. Nikolić, J. M. Rabaey, A. Chandrakasan and B. Nikolić, Digital Integrated CircuitsDigital Integrated Circuits, Upper Saddle River, , Upper Saddle River, New Jersey: Pearson Education, Inc., 2003, New Jersey: Pearson Education, Inc., 2003, Chapter 12.Chapter 12.

S.-M. Kang and Y. Leblebici, S.-M. Kang and Y. Leblebici, CMOS Digital CMOS Digital Integrated Circuits Analysis and DesignIntegrated Circuits Analysis and Design, New , New York: McGraw-Hill, 1996, Chapter 10.York: McGraw-Hill, 1996, Chapter 10.

Page 23: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2323

Low-Power Datapath ArchitectureLow-Power Datapath Architecture Lower supply voltageLower supply voltage

This slows down circuit speedThis slows down circuit speed Use parallel computing to gain the speed backUse parallel computing to gain the speed back

Works well when threshold voltage is also Works well when threshold voltage is also lowered.lowered.

About 60% reduction in power obtainable.About 60% reduction in power obtainable. Reference: A. P. Chandrakasan and R. W. Reference: A. P. Chandrakasan and R. W.

Brodersen, Brodersen, Low Power Digital CMOS DesignLow Power Digital CMOS Design, , Boston: Kluwer Academic Publishers (Now Boston: Kluwer Academic Publishers (Now Springer), 1995.Springer), 1995.

Page 24: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2424

A Reference DatapathA Reference Datapath

Combinationallogic

OutputInputR

eg

iste

r

Re

gis

ter

CK

Supply voltage = Vref

Total capacitance switched per cycle = Cref

Clock frequency = fPower consumption: Pref = CrefVref

2f

Cref

Page 25: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2525

A Parallel ArchitectureA Parallel Architecture

Comb.Logic

Copy 1

Comb.Logic

Copy 2

Comb.Logic

Copy N

Re

gis

ter

Re

gis

ter

Re

gis

ter

Re

gis

ter

N to

1 m

ulti

ple

xer

MultiphaseClock gen. and mux

control

InputOutput

CK

f

f/N

f/N

f/N

Each copy processes every Nth input, operates at reduced voltage

Supply voltage:VN ≤ V1 = Vref

N = Deg. of parallelism

Page 26: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2626

Level Converter: L to HLevel Converter: L to H

Vin_L

Vout_H

VDDH

VDDL

Transistors with thicker oxide and longer channels

N. H. E. Weste and D. Harris, CMOS VLSI Design, ThirdEdition, Section 12.4.3, Addison-Wesley, 2005.

Page 27: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2727

Level Converter: Input 0Level Converter: Input 0

Vin_L = 0

Vout_H

VDDH

VDDL1L

0

short

shortopen

open

VDDH

Page 28: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2828

Level Converter: Input 1Level Converter: Input 1

Vin_L = 1L

Vout_H

VDDH

VDDL0

VDDH

short

shortopen

open

0

Page 29: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

DVF4: Dual VDVF4: Dual VTHTH Feedback Type Feedback Type

4-Transistor Level Converter4-Transistor Level Converter

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 2929

Vin_L Vout_H

VDDHHigh Transistor

VDDL

VTH

Page 30: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

References for DVF4References for DVF4

K. N. Jayaraman, “DVF4: A Dual Vth Feedback Based 4-Transistor Level Converter,” Master’s thesis, Auburn University, Dec 2013.

K. N. Jayaraman and V. D. Agrawal, “A Four-Transistor Level Converter for Dual-Voltage Low-Power Design,” J. Low Power Electronics, vol. 10, no. 4, pp. 617–628, Dec 2014.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3030

Page 31: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3131

Level Converter: H to LLevel Converter: H to L

Vin_H Vout_L

VDDLTransistors with thicker oxide and longer channels

N. H. E. Weste and D. Harris, CMOS VLSI Design, ThirdEdition, Section 12.4.3, Addison-Wesley, 2005.

Page 32: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3232

Control Signals, N = 4Control Signals, N = 4

CK

Phase 1

Phase 2

Phase 3

Phase 4

Page 33: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3333

PowerPowerPN = Pproc + Poverhead

Pproc = N(Cinreg+ Ccomb)VN2f/N + CoutregVN

2f

= (Cinreg+ Ccomb+Coutreg)VN2f

= CrefVN2f

Poverhead = CoverheadVN2f ≈ δCref(N – 1)VN

2f

PN = [1 + δ(N – 1)]CrefVN2f

PN VN2

── = [1 + δ(N – 1)] ───P1 Vref

2

Page 34: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Alpha-Power Law ModelAlpha-Power Law ModelVariation of delay with supply voltage:Variation of delay with supply voltage:

delay delay αα V VDDDD /(V /(VDD DD – V – VTH TH ))αα

VVTH TH = Threshold voltage= Threshold voltage

αα = 1 for short-channel devices, ≈ 2 for long-channel devices = 1 for short-channel devices, ≈ 2 for long-channel devices

T. Sakurai and A. R. Newton, “Delay analysis of series-connected MOSFET circuits,” IEEE Journal of Solid-State Circuits, Vol. 26, pp.122–131, Feb. 1991.

T. Sakurai and A. R. Newton, “A simple MOSFET model for circuit analysis,” IEEE Transaction on Electron Devices, Vol. 38, No. 4, pp.887–894, Apr. 1991.

T. Sakurai, “High-speed circuit design with scaled-down MOSFETs and low supply voltage (invited),” Proc. IEEE ISCAS, pp.1487–1490, Chicago, May 1993.

T. Sakurai, “Alpha-Power Law MOS Model,” IEEE Solid-State Circuits Society Newsletter, Vol. 9, No. 4, pp. 4–5, Oct. 2004.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC5270/6270 Spr 15, Lecture 8ELEC5270/6270 Spr 15, Lecture 8 3434

Page 35: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9

3535

Voltage vs. SpeedVoltage vs. Speed k Vref

Circuit delay, T ≈ ──────── (Vref – VTH)2

wherek is a technology constantVTH is threshold voltage

Supply voltage

No

rma

lize

d g

ate

de

lay,

T

4.0

3.0

2.0

1.0

0.0VTH Vref =5VV2=2.9V

N=1

N=2

V3

N=31.2μ CMOS Voltage reduction

slows down as we get closer to VTH

Page 36: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3636

Increasing MultiprocessingIncreasing Multiprocessing

PN/P1

1 2 3 4 5 6 7 8 9 10 11 12

1.0

0.8

0.6

0.4

0.2

0.0

VTH = 0V (extreme case)

VTH = 0.4V

VTH = 0.8V

N

1.2μ CMOS, Vref = 5V

Page 37: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3737

Extreme Cases: VExtreme Cases: VTHTH = 0 = 0Delay, T α 1/ Vref

For N processing elements, delay = NT → VN = Vref/N

PN 1── = [1+ δ (N – 1)] ── → 1/NP1 N2

For negligible overhead, δ→0

PN 1── ≈ ──P1 N2

For VTH > 0, power reduction is less and there will be an optimum value of N.

Page 38: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3838

Example: Multiplier CoreExample: Multiplier Core Specification:Specification:

200MHz Clock200MHz Clock15W dissipation @ 5V15W dissipation @ 5VLow voltage operation, VLow voltage operation, VDDDD ≥ 1.5 volts ≥ 1.5 voltsFor threshold voltage, For threshold voltage, VVtt = 0.5V, = 0.5V,

(V(VDDDD – 0.5) – 0.5)22

Clock frequency = Clock frequency = ────────────── GHzGHz 20.25 V20.25 VDDDD

Problem:Problem:Integrate multiplier core on a SOCIntegrate multiplier core on a SOCPower budget for multiplier ~ 5WPower budget for multiplier ~ 5W

Page 39: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 3939

A Multicore DesignA Multicore Design

MultiplierCore 1

MultiplierCore 5

Reg

Reg

Reg

Reg

5 to

1 m

ux

MultiphaseClock gen.

and muxcontrol

Input

Output

200MHzCK

200MHz

40MHz

40MHz

40MHz

MultiplierCore 2

Core clock frequency = 200/N

Page 40: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4040

How Many Cores?How Many Cores?

For N cores:For N cores:clock frequency = 200/N MHzclock frequency = 200/N MHzSupply voltage, VSupply voltage, VDDN DDN

(V(VDDNDDN – 0.5) – 0.5)22 = 4.05 V= 4.05 VDDNDDN/N/N

VVDDNDDN22 – (1+4.05/N) V – (1+4.05/N) VDDNDDN + 0.25 = 0 + 0.25 = 0

Assuming 10% overhead per core,Assuming 10% overhead per core, VVDDNDDN

Power dissipation =15 [1 + 0.1(N – 1)] Power dissipation =15 [1 + 0.1(N – 1)] ((──────))2 2

wattswatts 55

Page 41: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4141

Design TradeoffsDesign TradeoffsNumber of cores, N

Clock (MHz)Core supply VDDN (volts)

Total Power

(watts)

11 200200 5.005.00 15.015.0

22 100100 2.942.94 5.705.70

33 66.6766.67 2.242.24 3.613.61

44 5050 1.881.88 2.762.76

55 4040 1.661.66 2.322.32

Page 42: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4242

Power Reduction in ProcessorsPower Reduction in Processors Just about everything is used.Just about everything is used. Hardware methods:Hardware methods:

Voltage reduction for dynamic powerVoltage reduction for dynamic power Dual-threshold devices for leakage reductionDual-threshold devices for leakage reduction Clock gating, frequency reductionClock gating, frequency reduction Sleep modeSleep mode

Architecture:Architecture: Instruction setInstruction set hardware organizationhardware organization

Software methodsSoftware methods

Page 43: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4343

Parallel ArchitectureParallel Architecture

Processor

f

Processor

f/2

Processor

f/2

f

Input Output

Input

Output

Capacitance = CVoltage = VFrequency = fPower = CV2f

Capacitance = 2.2CVoltage = 0.6VFrequency = 0.5fPower = 0.396CV2f

Page 44: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4444

Pipeline ArchitecturePipeline Architecture

Processor

f

Input Output

Re

gis

ter

½Proc.

f

Input Output

Re

gis

ter

½Proc.

Re

gis

ter

Capacitance = CVoltage = VFrequency = fPower = CV2f

Capacitance = 1.2CVoltage = 0.6VFrequency = fPower = 0.432CV2f

Page 45: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4545

Approximate TrendApproximate Trend n-parallel proc.n-parallel proc. n-stage pipeline proc.n-stage pipeline proc.

CapacitanceCapacitance nCnC CC

VoltageVoltage V/nV/n V/nV/n

FrequencyFrequency f/nf/n ff

PowerPower CVCV22f/nf/n22 CVCV22f/nf/n22

Chip areaChip area n timesn times 10-20% increase10-20% increase

G. K. Yeap, Practical Low Power Digital VLSI Design, Boston: Springer,1998.

Page 46: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4646

Multicore ProcessorsMulticore Processors

2000 2004 2008

Per

form

ance

bas

ed o

nS

PE

Cin

t200

0 an

d S

PE

Cfp

2000

ben

chm

arks

Multicore

Single core

Computer, May 2005, p. 12

Page 47: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4747

Multicore ProcessorsMulticore Processors D. Geer, “Chip Makers Turn to Multicore D. Geer, “Chip Makers Turn to Multicore

Processors,” Processors,” ComputerComputer, vol. 38, no. 5, pp. 11-13, , vol. 38, no. 5, pp. 11-13, May 2005.May 2005.

A. Jerraya, H. Tenhunen and W. Wolf, A. Jerraya, H. Tenhunen and W. Wolf, “Multiprocessor Systems-on-Chips,” “Multiprocessor Systems-on-Chips,” ComputerComputer, , vol. 5, no. 7, pp. 36-40, July 2005; vol. 5, no. 7, pp. 36-40, July 2005; this special issue contains three more articles on multicore processors.

S. K. Moore, “Winner Multimedia Monster – S. K. Moore, “Winner Multimedia Monster – Cell’s Nine Processors Make It a Supercomputer Cell’s Nine Processors Make It a Supercomputer on a Chip,” on a Chip,” IEEE SpectrumIEEE Spectrum, vol. 43. no. 1, pp. , vol. 43. no. 1, pp. 20-23, January 2006. 20-23, January 2006.

Page 48: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4848

Cell - Cell Broadband Engine Cell - Cell Broadband Engine ArchitectureArchitecture

L to RAtsushi Kameyama, ToshibaJames Kahle, IBMMasakazu Suzoki, Sony

© I

EE

E S

pe

ctru

m,

Jan

ua

ry 2

00

6

Nine-processor chip:192 Gflops

Page 49: Copyright Agrawal, 2007ELEC6270 Spring 15, Lecture 91 ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Memory and Multicore Design Vishwani.

Copyright Agrawal, 2007Copyright Agrawal, 2007 ELEC6270 Spring 15, Lecture 9ELEC6270 Spring 15, Lecture 9 4949

Cell’s Nine-Processor ChipCell’s Nine-Processor Chip

© IEEE Spectrum, January 2006 Eight IdenticalProcessors f = 5.6GHz (max)44.8 Gflops