EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/...1 EE241 - Spring 2013...

Post on 09-Jul-2020

2 views 0 download

Transcript of EE241 - Spring 2013bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s13/...1 EE241 - Spring 2013...

1

EE241 - Spring 2013Advanced Digital Integrated Circuits

Lecture 10: SRAM DesignDynamic Margins

2

Announcements

Homework 2 due next week

Quiz #1 today

2

3

Outline

Last lectureSRAM operation, static margins

This lectureFinish static margins,

Dynamic margins

Start assist techniques

SRAM

C. Static Read/Write Margins(continued)

3

5

Write Stability – Write Noise Margin (WNM)

• Writeability is becoming harder with scaling

• Optimizing read stability and writeability at the same time is difficult

AXR

NR

PR

VL VR

VDD

A. Bhavnagarwala, IEDM 2005

6

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.00E+00 2.00E-08 4.00E-08 6.00E-08 8.00E-08 1.00E-07

Time (s)

Vo

lta

ge

(V

)

WM

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.00E+00 2.00E-08 4.00E-08 6.00E-08 8.00E-08 1.00E-07

Time (s)

Vo

ltag

e (V

) WM

Highest BL voltage under which write is possible when BLC is kept precharged

BLWL

Write Stability – BL/WL Write Margins

Difference between VDD and lowest WL voltage under which write is possible when both bit-lines are precharged

4

7

Write Stability – Write Current (N-Curve)

C. Wann et al, IEEE VLSI-TSA 2005

Minimum current into the storage node

8H. Pilo, IEDM 2006

5

9

6-T SRAM Static/Dynamic Stability

Read MarginSNM: pessimistic

Write MarginWNM: optimistic

Introduction to dynamic margins

SRAM

D. Dynamic Margins

6

11

Dynamic Write Stability

TA < Twrite < TB

Twrite=dynamic write stability

Static margins are optimistic

Khalil, TVLSI‘08

12

Dynamic Read Stability

TA < Tread < TB

Tread = dynamic read stability

Static margins are pessimistic

Khalil, TVLSI ‘08

7

13

Dynamic Read Access

Khalil, TVLSI ‘08

TA < Taccess < TB

PD1 and PG1 are critical

Slide 13

14

VTh Window

Assuming global spread

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pMO

S V th

(V)

Read limit

1.0 V

Read limit

Write limit65 nm

ss

ff sf

fs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7

130 nm

nMOS Vth (V) nMOS Vth (V)

Write limit

ss

ff sf

fs

0.8 V

Yamaoka, ISSCC’05

8

SRAM

E. Assist Techniques

16

Peripheral Circuits to Help SRAM

Write assist techniques

Read assist techniques

Redundancy

ECC

9

17

Multi-Voltage SRAM

Read Write Retention

Periphery Vmin Vmin Vmin

BL Precharge

Vmin (H) Vmin (L) Vmin

WL Vmin Vmax N/A

Cell VDD Vmax Vmin Vmin

WL

BL

AXL‘1’ ‘0’

AXR

NRNL

PRPL

BL

VDD

18

Array Adjustments

S. Mukhopadhyay, VLSI 2006

Array back bias, to compensate for systematic variations

May be useful in technologies with strong body effect

10

19

Dynamic VDD Implementation

VCC selection is along column direction to decouple the read & write

VCC_lo

cell cell cell cell cellWL

cell cell cell cell cellWL

MUX (8:1)

W R R R

cellcell cellcell cellcell cellcell cellcellWL

cellcell cellcell cellcell cellcell

VCC_hiMUX MUX MUX MUX MUX

BI MUX

VCC MUX

Zhang, ISSCC’05

20

Floating VDD Technique

W/o second supply

Vdd

Memory cell

“H” “L”

Memory cell

“H” “L”

WL

Switch (off)“L” “H” Vddm Vddm

Switch (on)

Yamaoka, ISSCC’04

11

21

Collapsing VDD Technique

E. Karl, ISSCC’12

22

Collapsing VDD Technique

E. Karl, ISSCC’12

12

23

Negative BL

Nii, VLSI’08

0V0V

Negative bias gen Din

24

Negative BL

Arsovski, ISSCC’11

13

25

BL Stability Assist

Arsovski, ISSCC’11

26

WL Underdrive

Sensing appropriate WL voltage

Carlson, CICC’08Nho, ISSCC’10

14

27

Capacitive Write Assist

S. Ohbayashi, VLSI 2006

28

Write/Read Assist

H.Pilo, VLSI 2006

15

29

Pulsed WL/BL

M.Khellah, VLSI 2006

30

Next Lecture

Continue with SRAM