EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

12
EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm May 7, 2009 Richard Dorrance & Newton Hang

description

EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm. May 7, 2009 Richard Dorrance & Newton Hang. Motivation. Reduce power dissipation Subthreshold logic as alternative to CMOS Improve full adder design Low power arithmetic and computation Increase robustness in subthreshold logic - PowerPoint PPT Presentation

Transcript of EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Page 1: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

EE241 Spring 2009:Robust Subthreshold Adder Design in 32nm

May 7, 2009

Richard Dorrance &Newton Hang

Page 2: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Motivation

•Reduce power dissipation▫ Subthreshold logic as alternative to CMOS

•Improve full adder design▫ Low power arithmetic and computation▫ Increase robustness in subthreshold logic▫ Make subthreshold 32nm full adder feasible

EE241 Spring 2009

2

Page 3: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Current and Proposed Techniques•Sizing

▫ Super-threshold sizing ratio not optimal in subthreshold▫ Up size transistors x3-10 for increased robustness

•Sub-DTMOS▫ “Dynamic Body-Biasing”▫ Reduced Threshold Voltage &

Increased Mobility (Subthresholdslope approaches 60 mV/dec)

EE241 Spring 2009

3

Page 4: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

1-Bit Full Adder Cells

4

EE241 Spring 2009

Page 5: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Experimental Setup

EE241 Spring 2009

5

Page 6: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Noise Margins: Sum

EE241 Spring 2009

6

Page 7: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Noise Margins: Carry

EE241 Spring 2009

7

Page 8: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Failure Rates in N-Bit Ripple Carry Adders

EE241 Spring 2009

8

Page 9: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

EE241 Spring 2009

9

Reasons for Failure•Lack of individual cell robustness•Pass Transistor (14I & SERF)•Asymmetric inputs (“non-inverter-like”)•Large stacks not compensated for (inverter)

Page 10: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Power-Performance Comparison:Mirror vs Bridge

EE241 Spring 2009

10

 Pavg [nW] Tp_sum [ns] Tp_cout [ns]

% FailureMAX AVG STDEV MAX AVG STDEV MAX AVG STDEV

MINIMUM SIZE 14.21 12.92 0.61 2483.00 2124.79 162.82 2418.70 2085.00 163.32 66.00%

SIZING 25.99 23.56 0.92 2674.70 2301.08 166.56 2610.40 2259.04 159.20 1.00%

DTMOS 16.02 14.79 0.50 1550.00 1310.26 96.76 1530.00 1291.86 96.22 0.00%

SIZING & DTMOS 38.31 35.16 1.16 1692.60 1452.87 91.33 1679.40 1439.37 91.23 0.00%

  Pavg [nW] Tp_sum [ns] Tp_cout [ns]% Failure

  MAX AVG STDEV MAX AVG STDEV MAX AVG STDEV

MINIMUM SIZE 12.99 12.99 NA 2397.90 2397.90 NA 2238.60 2238.60 NA 99.00%

SIZING 32.11 29.10 0.93 4856.20 3909.37 347.18 4466.90 3880.75 353.46 11.00%

DTMOS 16.30 14.80 0.57 1926.00 1599.37 141.64 1530.50 1556.01 137.58 0.00%

SIZING & DTMOS 52.29 47.42 1.64 2442.50 2088.27 148.82 2083.90 2057.27 146.67 0.00%

32-bit Bridge Adder

32-bit Mirror Adder

Same power butMirror Adder

faster!

Page 11: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Conclusion

•Results▫ Mirror adder most practical (best performance)▫ Pass transistor logic more susceptible

•Pros vs. Cons▫ Overall power dissipation still much lower than standard

CMOS technology▫ Possible area issues (independent trenches)

EE241 Spring 2009

11

Page 12: EE241 Spring 2009: Robust Subthreshold Adder Design in 32nm

Future Work•Other Full Adders:

▫ Dynamic

•Other Adder Topologies:▫ Carry Look-ahead Adder▫ Carry Bypass (Skip) Adder▫ Carry Select Adder

•Energy-Delay Optimization

•Questions?

EE241 Spring 2009

12