EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 May 05, 2010 Professor...

27
EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 May 05, 2010 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Transcript of EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 May 05, 2010 Professor...

EE5342 – Semiconductor Device

Modeling and Characterization

Lecture 30May 05, 2010

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

2

dt for VBIC-R1.5 model• Model: VBIC-R1.5.

• “selft” flag set to 1.

• No optimization done.

• No external circuit connected.

• Rth=5.8E+0

• Cth=96E-12

L30 05/05/10

3

VBIC-R1.5 Y11 plot (standard data)

L30 05/05/10

4

VBIC-R1.5 Y11 plot (standard data)

L30 05/05/10

VBIC-R1.2 Y11 plot (optimized data)

5

• For optimized data refer slide “Model Parameters”.

• Circuit used is shown in “Circuit for Y parameters (optimized data)” slide.

fc Τ

fc1= 2E3 7.962E-05fc2=

9.25E4 1.721E-06fc3= 3.2E6 4.976E-08

Fc4=2E3 7.962E-05Fc5=1E5 1.592E-06Fc6=4E6 3.981E-08fc7= 2E3 7.962E-05fc8= 1E5 1.592E-06fc9=4E6 3.981E-08L30 05/05/10

Spreadsheet for Calculating the Rth and Cth• Calculations mentioned in the previous slides have

been implemented in an Excel spreadsheet.• The Cauer to Foster network transformation is done.

• The spreadsheet takes the dimensions of different layers of the devices and gives corresponding Cauer and Foster network values. This enables the calculation of time constants which can be converted into a single pole. The characteristic times for the Foster network appear on a impulse response plot.L30 05/05/10 6

Fig. 7. Electrical equivalent Cauer network of the HBT Fig. 8. Electrical equivalent Foster network of the HBT

IC-CAP Simulations

L30 05/05/10 7

8L30 05/05/10

Effect of Rth on current feedback op-amp settling time

-

+

vIN = 1 V P-P, t = 200 m-sec

500 W

500 W

vOUT

100 W

max,IN

OUTmax,OUT

Av

tvvOffset

9L30 05/05/10

y = 0.0055e-0.1416x

Offset = 0.16%Tau = 7.1 u-sec

y = 0.0039e-0.0749x

Offset = .39%Tau = 13.4 u-sec

0.01%

0.10%

1.00%

0 5 10 15 20 25 30Time after switching (u-sec)

Th

erm

al

sw

itc

hin

g o

ffs

et

as

%

of

Vp

Current Feedback Op Amp Data (LMH6704) Switching Offset

3.3/t4.13/t e%16.0e%39.0model cfoa

3.34.13/%39.07.7/%55.0

%16.0Tau

10L30 05/05/10

LMH6550 impulse thermal characteristics

• LeCroy sampling oscilloscope (1MW input mode)

• Maximum averaging (10000)• Input nominally +/- 1V with 50 micro-

sec period and 50% duty cycle.• Fractional Gain Error = FGE

1

vv

)t(v)t(v

FGE

max,IN

max,OUT

IN

OUT

11L30 05/05/10

vIN Rising Response

y = 0.0362e-111568x

R2 = 0.9707,Tau = 9 micro-sec

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05

0.10%

1.00%

10.00%

vOUT

vIN

FGE

12L30 05/05/10

y = 0.0373e-148345x

R2 = 0.9257Tau = 6.7 micro-sec

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05

0.10%

1.00%

10.00%

vIN Falling Response

vOUT

vIN

FGE

13

Current Feedback Op-Amp (CFOA) with Simple Current Mirror (CM) Bias

STICK1

VEE

VEE

VCC

VCC

Q1 Q2

Q3 Q4(stk2-pnp-cm)

Q11 Q12

Q9 Q10 Q17

Q18

Q14

Q13

Q15

Q16

VOZ

VN

STICK2 STICK3 STICK4 STICK5 STICK6

VEE

VCC

Q6

Q5

Q7(stk3-npn-bf)

Q8(stk3-pnp-bf)

VP

RF

200 μA

+1 V

-1 V

sup

L30 05/05/10

14

Large-signal Output Voltage Transient Analysis for CFOA with Simple CM Biasing

0 5 10 15 20 25 30 35 40 45-978

-976

-974

-972

-970

-968

Time (s)

Vo

ltag

e (

mV

)

0 5 10 15 20 25 30 35 40 45

1020

1022

1024

1026

1028

Time (s)

Vo

ltag

e (

mV

)

High-to-Low area x1

High-to-Low area x8

Low-to-High area x1

Low-to-High area x8

TT=-5311 V

TT=5313 V

TT=789 V

TT=-789 V

L30 05/05/10

15

Hypothesis: The Thermal Tail is a Linear Superposition of the Contribution from each

Individual Circuit Stick• The contribution of individual transistor to the total

thermal tail.

• Used six stick classifications according to transistor type and functionality.

i.e. Q10stk3-pnp-bf and Q11stk4-npn-cm

• Enabled the self-heating effect in the stick of interest and disabled the self-heating effect of the remaining transistors.

• Simulated the contribution of each individual stick.

• The total thermal tail simulated is essentially the sum of the individual thermal tail contributions of each circuit stick.

L30 05/05/10

16

The Hypothesis Supported  Area x1   Area x8

Thermal Tail (uV/V) High-to-Low Low-to-High High-to-Low Low-to-High

stk2-npn-bf (Q5) -822 842 -124 128

stk2-pnp-bf (Q6) -727 712 -101 98

stk2-npn-cm (Q2) -89 91 -11 12

stk2-pnp-cm (Q4) -91 89 -10 9

stk3-npn-bf (Q7) -877 850 -111 106

stk3-pnp-bf (Q8) -783 808 -111 115

stk4-npn-cm (Q12) -1213 1217 -172 173

stk4-pnp-cm (Q10) -1075 1073 -159 158

stk5-npn-bf(Q13) 13 -13 2 -2

stk5-pnp-bf(Q14) -4 4 -1 1

stk5-npn-cm(Q18) 16 -15 2 -2

stk5-pnp-cm(Q17) -5 2 0 0

stk6-npn-bf(Q15) 0 1 0 0

stk6-pnp-bf(Q16) -1 0 0 0

added total -5658 5661 -796 796

simulated total -5311 5313 -789 789L30 05/05/10

L30 05/05/10 17

L30 05/05/10 18

HeterojunctionElectrostatics

Eo

EC,p

EV,p

EF,pEF,n

EC,n

EV,n

DEC

DEV

qfp

qfn

-xn xp0

L30 05/05/10 19

Poisson’s EquationEx

xxp-xn

p

A

p

px qNdxdE

n

D

n

nx qN

dxdE

n,bix VdxE

n,bix VdxE

0xE0xE

0x at eqn Continuity

xpxn

L30 05/05/10 20

Heterojunctionelectronics

d

2inonovn,vn,f

n,vn,fn,gnn

dcn,fc

n,fcnn,fon

npbi

pand

N/np , p/NlnkTEE

EEEqq

N/NlnkTEE

EEqEEq

V

xqNxqN ,neutrality Charge

L30 05/05/10 21

Heterojunctionelectronics (cont)

text. in 8.40 & 8.39 c.f.

, N/NlnkTEE

, EEEqq

. N/nn , n/NlnkTEE

, EEqEEq

avp,vp,f

p,vp,fp,gpp

a2ipopocp,fc

p,fcpp,fop

L30 05/05/10 22

Heterojunctionelectronics (cont)

form. eappropriat the is this then

E is barrier eappropriat the and

important, is injection hole Since

. /Nnp and , Np

, N

N

p

plnkTEqV

8.39 e.g.

v

d2inoapo

n,v

n,v

no

povbi

L30 05/05/10 23

Heterojunctiondepletion widths

p,apn,dnp,a

n,dbipnp

p,apn,dnn,d

p,abipnn

p,apn,dnp,an,d

2p,an,dbipn

pn

NNqN

NV2x

NNqN

NV2x

NNNqN

NNV2xxW

L30 05/05/10 24

References• Fujiang Lin, et al, “Extraction Of VBIC Model for SiGe

HBTs Made Easy by Going Through Gummel-Poon Model”, from http://eesof.tm.agilent.com/pdf/VBIC_Model_Extraction.pdf

• http://www.fht-esslingen.de/institute/iafgp/neu/VBIC/• Avanti Star-spice User Manual, 04, 2001. • Affirma Spectre Circuit Simulator Device Model

Equations• Zweidinger, D.T.; Fox, R.M., et al, “Equivalent circuit

modeling of static substrate thermal coupling using VCVS representation”, Solid-State Circuits, IEEE Journal of , Volume: 2 Issue: 9 , Sept. 2002, Page(s): 1198 -1206

Thermal Analogy References

[1] I.Z. Mitrovic , O. Buiu, S. Hall, D.M. Bagnall and P. Ashburn “Review of SiGe HBTs on SOI”, Solid State Electronics, Sept. 2005, Vol. 49, pp. 1556-1567.

[2] Masana, F. N., “A New Approach to the Dynamic Thermal Modeling of Semiconductor Packages”, Microelectron. Reliab., 41, 2001, pp. 901–912.

[3] Richard C. Joy and E. S. Schlig, “Thermal Properties of Very Fast Transistors”, IEEE Trans. ED, ED-1 7. No. 8, August 1970, pp. 586-599.

[4] Kevin Bastin, “Analysis and Modeling of self heating in SiGe HBTs” , Aug. 2009, Masters Thesis, UTA.

[5] Rinaldi, N., “On the Modeling of the Transient Thermal Behavior of Semiconductor Devices”, IEEE Trans-ED, Volume: 48 , Issue: 12 , Dec. 2001; Pages:2796 – 2802.

L30 05/05/10 25

26

Simulation … References• [1] E. Castro, S. Coco, A. Laudani, L. LO Nigro and G. Pollicino, “A New Tool For

Bipolar Transistor Characterization Based on HICUM”, Communications to SIMAI Congress, ISSN 1827-9015, Vol. 2, 2007.

• [2] K. Bastin, “Analysis And Modeling of Self Heating in Silicon Germanium Heterojunction Bipolar Transistors”, Thesis report, The University of Texas at Arlington, August 2009.

L30 05/05/10

27

AICR Team at University of Texas Arlington - Electrical Engineering

Current• Ronald L. Carter, Professor• W. Alan Davis, Associate

Professor• Howard T. Russell, Senior

Lecturer• Ardasheir Rahman1

• Ratan Pulugurta1

• Xuesong Xie1

• Arun Thomas-Karingada2

• Sharath Patil2

• Valay Shah2

Earlier Contributors• Kevin Bastin, MS• Abhijit Chaugule, MS• Daewoo Kim, PhD• Anurag Lakhlani, MS• Zheng Li, PhD• Kamal Sinha, PhD

1PhD Student2MS Student

L30 05/05/10