EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter [email protected] .

29
EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc

Transcript of EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter [email protected] .

Page 1: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

EE 5340Semiconductor Device TheoryLecture 01 - Fall 2010

Professor Ronald L. [email protected]

http://www.uta.edu/ronc

Page 2: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

2

Web Pages

* Review the following• R. L. Carter’s web page

– www.uta.edu/ronc/

• EE 5340 web page and syllabus– www.uta.edu/ronc/5340/syllabus.htm

• University and College Ethics Policies– http://www.uta.edu/studentaffairs/conduct/– http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

Page 3: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

3

First Assignment

• Send e-mail to [email protected]– On the subject line, put “5340 e-mail”– In the body of message include

• email address: ______________________• Your Name*: _______________________• Last four digits of your Student ID: _____

* Your name as it appears in the UTA Record - no more, no less

Page 4: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

4

EE 5340/001 and 051 - Semiconductor Device Theory - Fall 2010 (draft)

(Click Syllabus to download AdobeAcrobat file) Instructor: Professor Ronald L. Carter, [email protected], http://www.uta.edu/ronc, 532 Nedderman Hall, (office hours: TBA), 817/272-3466, fax 817/272-2253Course Learning Goals and Objectives: Beginning with an introduction to solid state physics, the physics of semiconductor devices will be developed. Device physics will be applied to diodes, bipolar junction transistors and MOS transistors. Silicon and III-V device physics and technology will be considered.Class Meetings: MWF: Section 001 - 11:00 AM to 12:20 PM, 108 NH. Some class sessions will be devoted to demonstrations, problem solving tutorials or self-study. The final schedule is to be announced.

Page 5: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

5

Teaching Assistant: Ardasheir Rahman [email protected]. (Office: 206 ELB. Office hours: TBA.)Attendance Policy: Attendance at every class session for the entire 80-minute period is strongly advised. Lectures will be posted at http://www.uta.edu/ronc/5340/lectures by 8AM the day of class. Bring a copy to class. In order to validate your attendance, Assignment 1 given in the first lecture must be submitted. If not, you will be dropped from class for non-attendance.Text: RDevice Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. ISBN: 0-471-59398-2.

Page 6: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

6

Reference Texts: (Books on reserve in the Science and Engineering Library are marked R.)RDevices for Integrated Circuits: Silicon and III-V Compound Semiconductors, by H. Craig Casey, Jr., John Wiley & Sons, New York, 1999.RSemiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997.RDevice Electronics for Integrated Circuits, 2nd ed., by Muller and Kamins, Wiley, New York, 1986. RFundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989. RSemiconductor Physical Electronics, by Sheng S. Li, Plenum Press, New York, 1993. RPhysics of Semiconductor Devices, by S. M. Sze, Wiley-Interscience, New York, 1981.

Page 7: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

7

Spice References: (Books on reserve in the Science and Engineering Library are markedR.)RMicroSim PSpice for Windows, 2nd ed, by Goody, Prentice-Hall, Upper Saddle River, N.J., ©1998.RComputer-Aided Circuit Analysis Using PSpice by Walter Banzhaf, Regents/Prentice Hall, Englewood Cliffs, NJ, ©1992RSPICE: A Guide to Circuit Simulation and Analysis Using PSpice, 3rd ed., by Paul W. Tuinenga, Prentice Hall, Englewood Cliffs, NJ, ©1995. RSchematic Capture with MicroSim Pspice: for Windows 3.1, 4th Ed., by Herniter, ©2000, Prentice-HallPSpiceTM information to be determined

Page 8: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

8

Use of e-mail: Updates of class information are sent by e-mail. For this reason e-mail addresses are collected through Assignment 1. Questions should be sent to [email protected]. Always include the course number, EE5340, in the Subject line of e-mail messages to me. Answers will be sent to the EE5340 list if they are of general interest to the class. EE students should also subscribe to EE_GRADS at SUSCRIBE_EE_GRADS to receive EE Department information.Problems: The problem assignments to be given in the syllabus have been selected for your study, but will not be collected or graded. The study of the problems assigned will be helpful in preparing for the tests and final.

Page 9: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

9

Tests: Sample tests are posted at http://www.uta.edu/ronc/5340/tests/. Tests will be on the following dates: 9/29, 11/3, and the Final Exam on 12/15.Grade Calculation: Grade = (Test1 + Test2 + Project + Final)/4. Note that there are ONLY four components in the grade calculation.Grading Scale: A = 90 and aboveB = 75 to 89C = 60 to 74 D = 50 to 59 F = 49 and belowProject Assignment: Will be posted at http://www.uta.edu/ronc/5340/project. Click to download Project AssignmentStudent Evaluation of Teaching: Students will complete evaluation forms at the end of the semester.

Page 10: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

10

Lecture, Assignment, Quiz and Test Schedule(Lectures at http://www.uta.edu/ronc/5340/lectures by 8 AM

the day of class. Bring a copy to class.)

CL DATE DAY ASSIGNMENTS Important Dates

1 8/27 F Ch. 1 - Semiconductor Electronics, P1:1,3,4,6,8,182 8/30 M Appendix 1A - Electric Fields …3 9/1 W

4 9/3 F Ch. 2 - Silicon Technology, P2:15,18,19,20- 9/6 M Labor Day Holiday 9/75 9/8 W

6 9/10 F Ch. 3 - Metal-Semiconductor Contacts, P3:2,3,4,5,7,16

7 9/13 M

8 9/15 W Project Assigned

9 9/17 F Ch. 4 - pn Junctions, P4:1,2,5,6,9,14

10 9/20 M

11 9/22 W

12 9/24 F

13 9/27 M

14 9/29 W Test 1

15 10/1 F Ch. 4 - pn Junctions, continued

16 10/4 M

17 10/6 W

18 10/8 F

19 10/11 M Ch. 5 Currents in pn Junctions - P5:1,2,3,6,9,11,19,21

20 10/13 W

21 10/15 F

22 10/18 M

23 10/20 W

24 10/22 F

25 10/25 M Ch. 6 - Bipolar Transistors I, P6:1,5,8,9,12,13,16,17

26 10/27 W

27 10/29 F

28 11/1 M

29 11/3 W Test 2

30 11/5 F Ch. 7 - Bipolar Transistors II, P7:1,2,7,9,11,23,29

31 11/8 M

32 11/10 W

33 11/12 F

34 11/15 M Ch. 8 - Properties of the MOS System, P8:1,2,4,7,12,15

35 11/17 W Project Due

36 11/19 F

37 11/22 M

38 11/24 W Ch. 9 - MOSFETs I, P9:1,3,5,7,14,21,

- 11/26 F 11/25-28 - Thanksgiving Holiday

39 11/29 M

40 12/1 W

41 12/3 F Ch. 10 - MOSFETs II, P10:1,2,4,8

42 12/6 M

43 12/8 W

44 12/10 F Last Class

45 12/15 W

Page 11: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

11

CL DATE DAY ASSIGNMENTS Important Dates

1 8/27 F Ch. 1 - Semiconductor Electronics, P1:1,3,4,6,8,182 8/30 M Appendix 1A - Electric Fields …3 9/1 W

4 9/3 F Ch. 2 - Silicon Technology, P2:15,18,19,20- 9/6 M Labor Day Holiday 9/75 9/8 W

6 9/10 F Ch. 3 - Metal-Semiconductor Contacts, P3:2,3,4,5,7,16

7 9/13 M

8 9/15 W Project Assigned

9 9/17 F

10 9/20 M

11 9/22 W

12 9/24 F

13 9/27 M

14 9/29 W Test 1

15 10/1 F Ch. 4 - pn Junctions, continued

16 10/4 M

17 10/6 W

18 10/8 F

19 10/11 M Ch. 5 Currents in pn Junctions - P5:1,2,3,6,9,11,19,21

20 10/13 W

21 10/15 F

22 10/18 M

23 10/20 W

24 10/22 F

25 10/25 M Ch. 6 - Bipolar Transistors I, P6:1,5,8,9,12,13,16,17

26 10/27 W

27 10/29 F

28 11/1 M

29 11/3 W Test 2

30 11/5 F Ch. 7 - Bipolar Transistors II, P7:1,2,7,9,11,23,29

31 11/8 M

32 11/10 W

33 11/12 F

34 11/15 M Ch. 8 - Properties of the MOS System, P8:1,2,4,7,12,15

35 11/17 W Project Due

36 11/19 F

37 11/22 M

38 11/24 W Ch. 9 - MOSFETs I, P9:1,3,5,7,14,21,

- 11/26 F 11/25-28 - Thanksgiving Holiday

39 11/29 M

40 12/1 W

41 12/3 F Ch. 10 - MOSFETs II, P10:1,2,4,8

42 12/6 M

43 12/8 W

44 12/10 F Last Class

45 12/15 W

Page 12: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

12

CL DATE DAY ASSIGNMENTS Important Dates

1 8/27 F Ch. 1 - Semiconductor Electronics, P1:1,3,4,6,8,182 8/30 M Appendix 1A - Electric Fields …3 9/1 W

4 9/3 F Ch. 2 - Silicon Technology, P2:15,18,19,20- 9/6 M Labor Day Holiday 9/75 9/8 W

6 9/10 F Ch. 3 - Metal-Semiconductor Contacts, P3:2,3,4,5,7,16

7 9/13 M

8 9/15 W Project Assigned

9 9/17 F

10 9/20 M

11 9/22 W

12 9/24 F

13 9/27 M

14 9/29 W Test 1

15 10/1 F

16 10/4 M

17 10/6 W

18 10/8 F

19 10/11 M Ch. 5 Currents in pn Junctions - P5:1,2,3,6,9,11,19,21

20 10/13 W

21 10/15 F

22 10/18 M

23 10/20 W

24 10/22 F

25 10/25 M Ch. 6 - Bipolar Transistors I, P6:1,5,8,9,12,13,16,17

26 10/27 W

27 10/29 F

28 11/1 M

29 11/3 W Test 2

30 11/5 F Ch. 7 - Bipolar Transistors II, P7:1,2,7,9,11,23,29

31 11/8 M

32 11/10 W

33 11/12 F

34 11/15 M Ch. 8 - Properties of the MOS System, P8:1,2,4,7,12,15

35 11/17 W Project Due

36 11/19 F

37 11/22 M

38 11/24 W Ch. 9 - MOSFETs I, P9:1,3,5,7,14,21,

- 11/26 F 11/25-28 - Thanksgiving Holiday

39 11/29 M

40 12/1 W

41 12/3 F Ch. 10 - MOSFETs II, P10:1,2,4,8

42 12/6 M

43 12/8 W

44 12/10 F Last Class

45 12/15 W Final 11:00 AM to 1:30 PM

Page 13: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

13

Notes:1.This syllabus may be changed by the instructor as needed for good adademic practice. Use the "refresh" or "reload" function on your browser.2.Quizzes and tests are open book (must have a legally obtained copy-no Xerox copies) OR one handwritten page of notes. Calculator allowed.3.There will be no make-up, or early exams given. Attendance is required for all tests.4.Americans with Disabilities Act: The University of Texas at Arlington is on record as being committed to both the spirit and letter of federal equal opportunity legislation; reference Public Law 92-112 - The Rehabilitation Act of 1973 as amended. With the passage of federal legislation entitled Americans with

Page 14: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

14

Disabilities Act (ADA), pursuant to section 504 of the Rehabilitation Act, there is renewed focus on providing this population with the same opportunities enjoyed by all citizens. As a faculty member, I am required by law to provide "reasonable accommodations" to students with disabilities, so as not to discriminate on the basis of that disability. Student responsibility primarily rests with informing faculty of their need for accommodation and in providing authorized documentation through designated administrative channels. Information regarding specific diagnostic criteria and policies for obtaining academic accommodations can be found at www.uta.edu/disability. Also, you may visit the Office for Students with Disabilities in room 102 of University Hall or call them at (817) 272-3364.

Page 15: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

15

5. Academic Integrity: It is the philosophy of The University of Texas at Arlington that academic dishonesty is a completely unacceptable mode of conduct and will not be tolerated in any form. All persons involved in academic dishonesty will be disciplined in accordance with University regulations and procedures. Discipline may include suspension or expulsion from the University. "Scholastic dishonesty includes but is not limited to cheating, plagiarism, collusion, the submission for credit of any work or materials that are attributable in whole or in part to another person, taking an examination for another person, any act designed to give unfair advantage to a student or the attempt to commit such acts." (Regents’ Rules and Regulations, Series 50101, Section 2.2). See http://www.uta.edu/studentaffairs/conduct/.

Page 16: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

16

6. Submit a signed copy of http://www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf (the COE Ethics policy). Review the contents of this page and the website referenced in 5 above.

7. If identical material is submitted for grade by different students, the grade earned will be divided among all identical submissions.

8. A paper submitted for regrading will be compared to a copy of the original paper. If the paper does not agree with the original, points will be deducted.

9. Student Support Services Available: The University of Texas at Arlington supports a variety of student success programs to help you connect with the University and achieve academic success. These

Page 17: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

17

programs include learning assistance, developmental education, advising and mentoring, admission and transition, and federally funded programs. Students requiring assistance academically, personally, or socially should contact the Office of Student Success Programs at 817-272-6107 for more information and appropriate referrals.

10. Final Review Week: A period of five class days prior to the first day of final examinations in the long sessions shall be designated as Final Review Week. The purpose of this week is to allow students sufficient time to prepare for final examinations. During this week, there shall be no scheduled activities such as required field trips or performances; and no instructor shall assign any themes, research problems or exercises of similar

Page 18: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

18

scope that have a completion date during or following this week unless specified in the class syllabus. During Final Review Week, an instructor shall not give any examinations constituting 10% or more of the final grade, except makeup tests and laboratory examinations. In addition, no instructor shall give any portion of the final examination during Final Review Week. Classes are held as scheduled during this week and lectures and presentations may be given.

11. Librarian to Contact: See http://library.uta.edu/sel/ and http://libguides.uta.edu/content.php?pid=3545

12. Electronic Communication Policy: A UTA listserv is being established for EE 5340. All class communication will be conducted via this list. To sign up, go to https://listserv.uta.edu/archives/EE5340.html, click on the link "Join or Leave EE5340", or send e-mail to

Page 19: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

19

[email protected] with the command "subscribe EE5340 your_name" (without the quotes) in the body of the message. You may receive communication from this listserv at any email address you choose. If you have questions, send email to [email protected]. In addition, the University of Texas at Arlington has adopted the University “MavMail” address as the sole official means of communication with students. MavMail is used to remind students of important deadlines, advertise events and activities, and permit the University to conduct official transactions exclusively by electronic means. For example, important information concerning registration, financial aid, payment of bills, and graduation are now sent to students through the MavMail system. All students are assigned a MavMail account. Students are responsible for checking

Page 20: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

20

MavMail regularly. Information about activating and using MavMail is available at http://www.uta.edu/oit/email/. There is no additional charge to students for using this account, and it remains active even after they graduate from UT Arlington.

13. Grade Grievance Policy: Forms to report a grade grievance are available in the EE Office.

Page 21: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

21

Quantum Concepts

• Bohr Atom

• Light Quanta (particle-like waves)

• Wave-like properties of particles

• Wave-Particle Duality

Page 22: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

22

Bohr model forHydrogen atom• Electron (-q) rev.

around proton (+q)• Coulomb force,

F = q2/4or2, q = 1.6E-19 Coul, o=8.854E-14Fd/cm

• Quantization L = mvr = nh/2, h =6.625E-34J-sec

Page 23: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

23

Bohr model for the H atom (cont.)• En= -(mq4)/[8o

2h2n2] ~ -13.6 eV/n2

• rn= [n2oh2]/[mq2] ~ 0.05 nm = 1/2 Ao

for n=1, ground state

Page 24: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

24

Bohr model for the H atom (cont.)En= - (mq4)/[8o

2h2n2] ~ -13.6 eV/n2 *

rn= [n2oh2]/[mq2] ~ 0.05 nm = 1/2 Ao

*

*for n=1, ground state

Page 25: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

25

Energy Quanta for Light

• Photoelectric Effect:

• Tmax is the energy of the electron emitted from a material surface when light of frequency f is incident.

• fo, frequency for zero KE, mat’l spec.

• h is Planck’s (a universal) constanth = 6.625E-34 J-sec

stopomax qVffhmvT 2

21

Page 26: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

26

Photon: A particle-like wave• E = hf, the quantum of energy for

light. (PE effect & black body rad.)• f = c/, c = 3E8m/sec, =

wavelength• From Poynting’s theorem (em

waves), momentum density = energy density/c

• Postulate a Photon “momentum” p = h/= hk, h =

h/2 wavenumber, k =2/

Page 27: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

27

Wave-particle duality

• Compton showed p = hkinitial - hkfinal, so an photon (wave) is particle-like

Page 28: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

28

Wave-particle duality

• DeBroglie hypothesized a particle could be wave-like, = h/p

Page 29: EE 5340 Semiconductor Device Theory Lecture 01 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu .

©rlc L01 27Aug2010

29

References

*Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989.

**Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago.