L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring...

22
L11 February 24 1 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Transcript of L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring...

Page 1: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 1

EE5342 – Semiconductor Device Modeling and CharacterizationLecture 11 - Spring 2004

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 2

• Dinj– IS– N ~ 1– IKF, VKF, N ~ 1

• Drec– ISR– NR ~ 2

SPICE DiodeStatic Model

Vd

iD*RS

Vext = vD + iD*RS

Page 3: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 3

PARAMETER definition and units default value

IS saturation current amp 1E-14ISR recombination current parameter amp 0.0IKF high-injection knee current amp infiniteN emission coefficient 1.0NR emission coefficient for isr 2.0RS parasitic resistance ohm 0.0EG bandgap voltage (barrier height) eV 1.11XTI IS temperature exponent 3.0BV reverse breakdown knee voltage volt infiniteIBV reverse breakdown knee current amp 1E-10NBV reverse breakdown ideality factor 1.0

SPICE Diode DC Model Params.1

Page 4: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 4

Id = area·(Ifwd - Irev)Ifwd = forward current

= Inrm·Kinj + Irec·KgenInrm = normal current = IS·(eVd/(N·Vt)-1)

if: IKF > 0then: Kinj = high-injection factor

= (IKF/(IKF+Inrm))^1/2else: Kinj = 1

Irec = recombination current = ISR·(eVd/(NR·Vt)-1)Kgen = generation factor = ((1-Vd/VJ)^2+0.005)M/2Irev = reverse current = Irevhigh + IrevlowIrevhigh = IBV·e-(Vd+BV)/(NBV·Vt)Irevlow = IBVL·e-(Vd+BV)/(NBVL·Vt)

SPICE Diode DC Model Eqns.1

Page 5: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 5

1N ,

V2NV

t

aexp~

1N ,

VNV

t

aexp~

Vext

ln(I)

data Effect of Rs

2NR ,

VNRV

t

aexp~

VKF

Plot of SPICE D.C. Va > 0 current equations

Sexta RI-VV

IKFISln

ISRln

ISln

IKFln

Page 6: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 6

Static Model Eqns.Parameter ExtractionIn any region we can approximate the i-V relationship as a single exponential.

iD ~ Iseff (exp (Vd/(NeffVt)) - 1)

{diD/dVd}/iD = d[ln(iD)]/dVd = 1/(NeffVt)

so Neff = {dVd/d[ln(iD)]}/Vt ,

and ln(ISeff). = ln(iD) - Vd/(NVt).

(Note treat iD, Vt, etc., as normalized to 1A, 1V, respectively)

Page 7: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 7

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

iD(A), Iseff(A), and 1/Reff(mho) vs. Vext(V)

Diode Par.Extraction 1

2345

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Neff vs. Vext

1/Reff

iD

ISeff

Page 8: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 8

Results ofParameter Extraction• At Vd = 0.2 V, NReff = 1.97,

ISReff = 8.99E-11 A.• At Vd = 0.515 V, Neff = 1.01,

ISeff = 1.35 E-13 A.• At Vd = 0.9 V, RSeff = 0.725 Ohm• Compare to

.model Dbreak D( Is=1e-13 N=1 Rs=.5 Ikf=5m Isr=.11n Nr=2)

Page 9: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 9

Hints for RS and NFparameter extractionIn the region where vD > VKF. Defining

vD = vDext - iD*RS and IHLI = [ISIKF]1/2.

iD = IHLIexp (vD/2NVt) + ISRexp (vD/NRVt)

diD/diD = 1 (iD/2NVt)(dvDext/diD - RS) + …

Thus, for vD > VKF (highest voltages only)

plot iD-1 vs. (dvDext/diD) to get a line with

slope = (2NVt)-1, intercept = - RS/(2NVt)

Page 10: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 10

PARAMETER definition and units default value

TT transit time sec 0.0CJO zero-bias p-n capacitance farad 0.0M p-n grading coefficient 0.5FC forward-bias depletion capacitance coeff 0.5VJ p-n potential volt 1.0

SPICE Diode Capacitance Pars.1

Page 11: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 11

Cd = Ct + area·CjCt = transit time capacitance = TT·GdGd = DC conductance = area * d (Inrm Kinj + Irec Kgen)/dVdKinj = high-injection factor

Cj = junction capacitanceIF: Vd < FC·VJ Cj = CJO*(1-Vd/VJ)^(-M) IF: Vd > FC·VJ Cj = CJO*(1-FC)^(-1-M)·(1-FC·(1+M)+M·Vd/VJ)

SPICE Diode Capacitance Eqns.1

Page 12: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 12

Junction Capacitance

• A plot of [Cj]-1/M vs. Vd hasSlope = -[(CJO)1/M/VJ]-1

vertical axis intercept = [CJO]-2 horizontal axis intercept = VJ

Cj-1/M

VJVd

CJO-1/M

Page 13: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 13

Junction Width and Debye Length

• LD estimates the transition length of a step-junction DR (concentrations Na and Nd with Neff =

NaNd/(Na +Nd)). Thus,

bi

efft

dabia

dDaD

VFC12

NV

N1

N1

VFCVWNLNL

*

• For Va=0, & 1E13 < Na,Nd < 1E19 cm-3

13% < < 28% => DA is OK

pnqVL tD / , qNVVW effdbi /

Page 14: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 14

Junction CapacitanceAdapted from Figure 1-16 in Text2

Cj = CJO/(1-Vd/VJ)^M

Cj = CJO/(1-FC)^(1+M)*(1-FC·(1+M)+M·Vd/VJ)

VJFC*VJ

Page 15: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 15

SPICE Diode A.C. Parameters

Page 16: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 16

SPICE Diode Static I-V

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

0.0 0.2 0.4 0.6 0.8 1.0

IS = 1.00E-14 N = 1.00 RS = 1.00Id

,ext

(A)

Vd,ext (V)

Page 17: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 17

Small signal diodeZ-parameter**

TT M, VJ, CJO, RS, N, IS, par SPICE

VJRSIV1CJOC

rg , TTgC

1VNRSIVexpISI

meas. V & I ,qkTV , IVNr

r)C(Crω1r{Z}Re

Mddj

1dddd

tddd

ddtdtd

s2

dj2d

2d

Page 18: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 18

SPICE Diode Re{Z}

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Re{

Z}

(O

hm

s)

Frequency (Hz)

CJ0 = 1E-12

VJ = 0.75

M = 0.5

TT = 1E-9

(2TT)-11 A

100 pA

1 nA

10 nA

100 nA

10 A100 A

1 mA10 mA

Page 19: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 19

PARAMETER definition and units default value

XTI IS temperature exponent 3.0TIKF ikf temperature coefficient (linear) °C -1 0.0TRS1 rs temperature coefficient (linear) °C -1 0.0TRS2 rs temperature coefficient (quadratic) °C -2 0.0TBV1 bv temperature coefficient (linear) °C -1 0.0TBV2 bv temperature coefficient (quadratic) °C -2 0.0T_ABS absolute temperature °CT_MEASURED measured temperature °CT_REL_GLOBAL relative to current temperature °CT_REL_LOCAL Relative to AKO model temperature °C

SPICE Diode Temperature Pars.1

Page 20: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 20

SPICE Diode Temperature Eqs.1IS(T) / IS =exp(T/ Tnom-1)·EG/ (N·Vt)·(T/ Tnom) (̂XTI / N )

ISR(T) / ISR =exp(T/ Tnom-1)·EG/ (NR·Vt)·(T/ Tnom) (̂XTI / NR )

IKF(T) / IKF = (1 + TI KF·(T-Tnom))

BV(T) / BV = (1 + TBV1·(T-Tnom) + TBV2·(T-Tnom) 2̂)

RS(T) / RS = (1 + TRS1·(T-Tnom) + TRS2·(T-Tnom) 2̂)

VJ (T) / VJ =T/ Tnom - 3·Vt·ln(T/ Tnom) - Eg(Tnom)·T/ Tnom + Eg(T)

Eg(T) =1.16 - .000702·T 2̂/ (T+1108)

CJ O(T) / CJ O = {1+M[4E-4*(T-Tnom)+(1-VJ (T)/VJ )]}

Page 21: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 21

Corrections

IS(T) / IS =

exp{[Eg(Tn)/ Vtn - Eg(T)/ Vt]/ N}/ *(T/ Tnom) (̂XTI / NR)

ISR(T) / ISR =

exp{[Eg(Tn)/ Vtn - Eg(T)/ Vt]/ NR}/ *(T/ Tnom) (̂XTI / NR)

Page 22: L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu

L11 February 24 22

References

1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc.

2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993.