L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001...

36
L08 Feb 08 1 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Transcript of L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001...

Page 1: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 1

Lecture 08 Semiconductor Device Modeling and CharacterizationEE5342 - Spring 2001

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 2

Ideal diodeequation (cont.)• Js = Js,p + Js,n = hole curr + ele curr

Js,p = qni2Dp coth(Wn/Lp)/(NdLp) =

qni2Dp/(NdWn), Wn << Lp, “short” =

qni2Dp/(NdLp), Wn >> Lp, “long”

Js,n = qni2Dn coth(Wp/Ln)/(NaLn) =

qni2Dn/(NaWp), Wp << Ln, “short” =

qni2Dn/(NaLn), Wp >> Ln, “long”

Js,n << Js,p when Na >> Nd

Page 3: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 3

Diffnt’l, one-sided diode conductance

Va

IDStatic (steady-state) diode I-V characteristic

VQ

IQ QVa

DD dV

dIg

t

asD V

VdexpII

Page 4: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 4

Diffnt’l, one-sided diode cond. (cont.)

DQ

t

dQd

QDDQt

DQQd

tat

tQs

Va

DQd

tastasD

IV

g1

Vr ,resistance diode The

. VII where ,V

IVg then

, VV If . V

VVexpI

dV

dIVg

VVdexpIVVdexpAJJAI

Q

Page 5: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 5

Charge distr in a (1-sided) short diode

• Assume Nd << Na

• The sinh (see L12) excess minority carrier distribution becomes linear for Wn << Lp

pn(xn)=pn0expd(Va/Vt)

• Total chg = Q’p = Q’p = qpn(xn)Wn/2x

n

x

xnc

pn(xn

)

Wn = xnc-

xn

Q’p

pn

Page 6: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 6

Charge distr in a 1-sided short diode

• Assume Quasi-static charge distributions

• Q’p = Q’p = qpn(xn)Wn/2

• dpn(xn) = (W/2)*

{pn(xn,Va+V) - pn(xn,Va)}

x

n

xxnc

pn(xn,Va)

Q’p

pn pn(xn,Va+V)

Q’p

Page 7: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 7

Cap. of a (1-sided) short diode (cont.)

p

x

x p

ntransitQQ

transitt

DQ

pt

DQQ

taaa

a

Ddx

Jp

qVV

V

I

DV

IV

VVddVdV

dVA

nc

n2W

Cr So,

. 2W

C ,V V When

exp2

WqApd2

)W(xpqAd

dQC Define area. diode A ,Q'Q

2n

dd

2n

dta

nn0nnn

pdpp

Page 8: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 8

General time-constant

np

a

nnnn

a

pppp

pnVa

pn

Va

DQd

CCC ecapacitanc diode total

the and ,dVdQ

Cg and ,dV

dQCg

that so time sticcharacteri a always is There

ggdV

JJdA

dVdI

Vg

econductanc the short, or long diodes, all For

QQ

Page 9: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 9

General time-constant (cont.)

times.-life carr. min. respective the

, and side, diode long

the For times. transit charge physical

the ,D2

W and ,

D2W

side, diode short the For

n0np0p

n

2p

transn,np

2n

transp,p

Page 10: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 10

General time-constant (cont.)

Fdd

transitminF

gC

and 111

by given average

the is time transition effective The

sided-one usually are diodes Practical

Page 11: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 11

Effect of non-zero E in the CNR• This is usually not a factor in a short

diode, but when E is finite -> resistor• In a long diode, there is an additional

ohmic resistance (usually called the parasitic diode series resistance, Rs)

• Rs = L/(nqnA) for a p+n long diode.

• L=Wn-Lp (so the current is diode-like for Lp and the resistive otherwise).

Page 12: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 12

)pn( ,ppp and ,nnn where

kTEfiE

coshn2np

npnU

dtpd

dtnd

GRU

oo

oT

i

2i

Effect of carrierrecombination in DR• The S-R-H rate (no = po = o) is

Page 13: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 13

Effect of carrierrec. in DR (cont.)• For low Va ~ 10 Vt

• In DR, n and p are still > ni

• The net recombination rate, U, is still finite so there is net carrier recomb.– reduces the carriers available for the

ideal diode current– adds an additional current component

Page 14: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 14

eff,o

taieffavgrec

o

taimaxfpfna

fnfii

fifni

x

xeffavgrec

2V2/Vexpn

qWxqUJ

2V2/Vexpn

U ,EEqV w/

,kT/EEexpnp

and ,kT/EEexpnn cesin

xqUqUdxJ curr, ecRn

p

Effect of carrierrec. in DR (cont.)

Page 15: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 15

High level injection effects• Law of the junction remains in the same

form, [pnnn]xn=ni

2exp(Va/Vt), etc.

• However, now pn = nn become >> nno = Nd, etc.

• Consequently, the l.o.t.j. reaches the limiting form pnnn = ni

2exp(Va/Vt)

• Giving, pn(xn) = niexp(Va/(2Vt)), or np(-xp) = niexp(Va/(2Vt)),

Page 16: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 16

High level injeffects (cont.)

KFKFKFsinj lh,s

i

at

i

dtKFa

appdnn

a

tainj lh,sinj lh

VJJ ,JJJ :Note

nN

lnV2 or ,n

NlnV2VV Thus

Nx-n or ,Nxp giving

V of range the for important is This

V2/VexpJJ

:is density current injection level-High

Page 17: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 17

Summary of Va > 0 current density eqns.• Ideal diode, Jsexpd(Va/(Vt))

– ideality factor,

• Recombination, Js,recexp(Va/(2Vt))– appears in parallel with ideal term

• High-level injection, (Js*JKF)

1/2exp(Va/(2Vt))

– SPICE model by modulating ideal Js term

• Va = Vext - J*A*Rs = Vext - Idiode*Rs

Page 18: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 18

Plot of typical Va > 0 current density eqns.

Vext

ln J

data

ln(JKF)

ln(Js)

ln[(Js*JKF) 1/2]

Effect

of Rs

t

aV

Vexp~

t

aV2

Vexp~

VKF

ln(Jsrec)

Effect of high level injection

low level injection

recomb. current

Vext-Vd=JARs

Page 19: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 19

Reverse bias (Va<0)=> carrier gen in DR• Va < 0 gives the net rec rate,

U = -ni/, = mean min carr g/r l.t.

NNN/NNN and

qN

VV2W where ,

2Wqn

J

(const.) U- G where ,qGdxJ

dadaeff

eff

abi

0

igen

x

xgen

n

p

Page 20: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 20

Reverse bias (Va< 0),carr gen in DR (cont.)

gens

gen

gengensrev

JJJ

JSPICE

JJJJJ

or of largest the set then ,0

V when 0 since :note model

VV where ,

current generation the plus bias negative

for current diode ideal the of value The

current the to components two are there

bias, reverse ,)0V(V for lyConsequent

a

abi

ra

Page 21: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 21

Reverse biasjunction breakdown• Avalanche breakdown

– Electric field accelerates electrons to sufficient energy to initiate multiplication of impact ionization of valence bonding electrons

– field dependence shown on next slide

• Heavily doped narrow junction will allow tunneling - see Neamen*, p. 274– Zener breakdown

Page 22: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 22

Ecrit for reverse breakdown (M&K**)

Taken from p. 198, M&K**

Page 23: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 23

Reverse biasjunction breakdown• Assume -Va = VR >> Vbi, so Vbi-Va-->VR

• Since Emax~ 2VR/W = (2qN-VR/())1/2, and VR = BV when Emax = Ecrit (N

- is doping of lightly doped side ~ Neff)

BV = (Ecrit )2/(2qN-)

• Remember, this is a 1-dim calculation

Page 24: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 24

Junction curvatureeffect on breakdown• The field due to a sphere, R, with

charge, Q is Er = Q/(4r2) for (r > R)

• V(R) = Q/(4R), (V at the surface)• So, for constant potential, V, the field,

Er(R) = V/R (E field at surface increases for smaller spheres)

Note: corners of a jctn of depth xj are like 1/8 spheres of radius ~ xj

Page 25: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 25

BV for reverse breakdown (M&K**)

Taken from Figure 4.13, p. 198, M&K**

Breakdown voltage of a one-sided, plan, silicon step junction showing the effect of junction curvature.4,5

Page 26: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 26

Example calculations• Assume throughout that p+n jctn with Na

= 3e19cm-3 and Nd = 1e17cm-3

• From graph of Pierret mobility model, p

= 331 cm2/V-sec and Dp = Vtp = ? • Why p and Dp?

• Neff = ?

• Vbi = ?

Page 27: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 27

0

500

1000

1500

1.E+13 1.E+14 1.E+15 1.E+16 1.E+17 1.E+18 1.E+19 1.E+20

Doping Concentration (cm̂ - 3)

Mob

ility

(cm̂

2/V

-se

c)P As B n(Pierret) p(Pierret)

Page 28: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 28

Parameters forexamples• Get min from the model used in Project

2 min = (45 sec) 1+(7.7E-18cm3Ni+(4.5E-36cm6Ni

2

• For Nd = 1E17cm3, p = 25 sec

– Why Nd and p ?

• Lp = ?

Page 29: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 29

Hole lifetimes, taken from Shur***, p. 101.

Page 30: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 30

Example

• Js,long, = ?

• If xnc, = 2 micron, Js,short, = ?

Page 31: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 31

Example(cont.)• Estimate VKF

• Estimate IKF

Page 32: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 32

Example(cont.)• Estimate Js,rec

• Estimate Rs if xnc is 100 micron

Page 33: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 33

Example(cont.)• Estimate Jgen for 10 V reverse bias

• Estimate BV

Page 34: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 34

Diode equivalentcircuit (small sig)

ID

VDVQ

IQ

t

Q

dd

VD

D

V

I

r1

gdVdI

Q

is the practical

“ideality factor”

Q

tdiff

t

Qdiffusion

mintrdd

IV

r , V

IC

long) for short, for ( , Cr

Page 35: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 35

Small-signal eqcircuit

CdiffCdep

l

rdiff

Cdiff and

Cdepl are both charged by

Va = VQQa

2/1

bi

ajojdepl VV ,

VV

1CCC

Va

Page 36: L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE5342 - Spring 2001 Professor Ronald L. Carter ronc@uta.edu

L08 Feb 08 36

References

* Semiconductor Physics and Devices, 2nd ed., by Neamen, Irwin, Boston, 1997.

**Device Electronics for Integrated Circuits, 2nd ed., by Muller and Kamins, John Wiley, New York, 1986.

***Physics of Semiconductor Devices, Shur, Prentice-Hall, 1990.