Semiconductor Device Modeling and Characterization – EE5342 Lecture 37 – Spring 2011 Professor...

47
Semiconductor Device Modeling and Characterization – EE5342 Lecture 37 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Transcript of Semiconductor Device Modeling and Characterization – EE5342 Lecture 37 – Spring 2011 Professor...

Semiconductor Device Modeling and

Characterization – EE5342 Lecture 37 – Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

©rlc L37-04May2011

SPICE mosfet Model Instance CARM*, Ch. 4, p. 290M MOSFET

General Form

M<name> <drain node> <gate node> <source node>+ <bulk/substrate node> <model name>+ [L=<value>] [W=<value>]+ [AD=<value>] [AS=<value>]+ [PD=<value>] [PS=<value>]+ [NRD=<value>] [NRS=<value>]+ [NRG=<value>] [NRB=<value>]+ [M=<value>]

Examples

M1 14 2 13 0 PNOM L=25u W=12uM13 15 3 0 0 PSTRONGM16 17 3 0 0 PSTRONG M=2M28 0 2 100 100 NWEAK L=33u W=12u+ AD=288p AS=288p PD=60u PS=60u NRD=14 NRS=24 NRG=10

L = Ch. L. [m]W = Ch. W. [m]AD = Drain A [m2]AS = Source A[m2]NRD, NRS = D and S diff in squares

M = device multiplier

©rlc L37-04May2011

CARM*, Ch. 4, p. 99Model Forms

.MODEL <model name> NMOS [model parameters]

.MODEL <model name> PMOS [model parameters]

As shown in Figure 11, the MOSFET is modeled as an in tr insic MOSFET with ohmic resistances in series with the drain , source, gate, and bulk (substrate). There is also a shunt resistance (RDS) in parallel with the drain-source channel.

[L=<value>] [W=<value>] cannot be used in conjunction with Monte Carlo analysis .

The simulator provides four MOSFET device models, which differ in the formulation of the I-V characteristic. The LEVEL parameter selects between di fferent models :

LEVEL=1 is the Shichman-Hodges model (see reference [1])LEVEL=2 is a geometry-based, analytic model (see reference [2])LEVEL=3 is a semi-empirical, short-channel model (see reference [2])LEVEL=4 is the BSIM model (see reference [3])LEVEL=5 is the BSIM3 model (see reference [7] Version 1.0)LEVEL=6 is the BSIM3 model (see reference [7] Version 2.0)

L and W are the channel length and width, and are decreased to get the effective channel length and width. L and W can be specified in the device, model, or .OPTIONS statements. The value in the device statement supersedes the va lue in the model sta tement, which supersedes the value in the .OPTIONS statement.

©rlc L37-04May2011

SPICE mosfet model levels• Level 1 is the Schichman-Hodges

model• Level 2 is a geometry-based,

analytical model• Level 3 is a semi-empirical, short-

channel model• Level 4 is the BSIM1 model• Level 5 is the BSIM2 model, etc.

©rlc L37-04May2011

SPICE ParametersLevel 1 - 3 (Static)Par am. Parameter Description Def . Typ. Units

VTO Zero-bias Vthresh 1 1 V

KP Transconductance 2.E-05 3.E-05 A/ V 2̂

GAMMA Body-eff ect par. 0.0 0.35 V 1̂/ 2

PHI Surf ace inversion pot. 0.6 0.65 V

LAMBDA Channel-length mod. 0.0 0.02 1/ V

TOX Thin oxide thickness 1.E-07 1.E-07 m

NSUB Substrate doping 0.0 1.E+15 cm̂ -3

NSS Surf ace state density 0.0 1.E+10 cm̂ -2

LD Lateral diff usion 0.0 8.E-05 m

©rlc L37-04May2011

Par am. Parameter Description Def . Typ. Units

TPG Type of gate material* 1 1

UO Surf ace mobility 600 700 cm̂ 2/ V-s

I S Bulk j ctn. sat. curr. 1.E-14 1.E-15 A

J S Bulk j ctn. sat. curr. dens. A/ m̂ 2

PB Bulk junction potential 0.8 0.75 V

RD Drain ohmic resistance 0 10 Ohms

RS Source ohmic resistance 0 10 Ohms

RSH S/ D sheet ohmic res. 0 10 Ohms/ sq

SPICE ParametersLevel 1 - 3 (Static)

* 0 = aluminum gate, 1 = silicon gate opposite substrate type, 2 = silicon gate same as substrate.

©rlc L37-04May2011

SPICE ParametersLevel 1 - 3 (Q & N)Par am. Parameter Description Def . Typ. Units

CJ Zero-bias bulk cap./ A 0 1.E-09 Fd/ m̂ 2

MJ Bulk j ctn. grading coeff . 0.5 0.5

CJ SW Zero-bias perimeter C/ l 0 1.E-09 Fd/ m

MJ SW Per. C grading coeff . 0.5 0.5

FC For.-bias cap. coeff . 0.5 0.5

CGBO Gate-bulk overlap C/ L 0 2.E-10 Fd/ m

CGDO Gate-drain overlap C/ L 0 4.E-11 Fd/ m

CGSO G-S overlap C/ L 0 4.E-11 Fd/ m

AF Flicker-noise exp. 1 1.2

KF Flicker-noise coeff . 0.0 1.E-26

©rlc L37-04May2011

Level 1 Static Const.For Device EquationsVfb = -TPG*EG/2 -Vt*ln(NSUB/ni)

- q*NSS*TOX/eOxVTO = as given, or

= Vfb + PHI + GAMMA*sqrt(PHI)KP = as given, or = UO*eOx/TOXCAPS are spice pars., technological

constants are lower case

©rlc L37-04May2011

Level 1 Static Const.For Device Equations = KP*[W/(L-2*LD)] = 2*K, K not spiceGAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni)ISD = as given, or = JS*AD

ISS = as given, or = JS*AS

©rlc L37-04May2011

Level 1 Static Device Equationsvgs < VTH, ids = 0VTH < vds + VTH < vgs, id = KP*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds)VTH < vgs < vds + VTH, id = KP/2*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds)

©rlc L37-04May2011

SPICE ParametersLevel 2Par am. Parameter Description Def . Typ. Units

NEFF Total channel chg coeff . 1 5

UCRI T Critical E-fi eld f or mob. 1.E+04 1.E+04 V/ cm

UEXP Expon. coeff . f or mob. 0 0.1

UTRA Transverse fi eld coeff . 0 0.5

©rlc L37-04May2011

SPICE ParametersLevel 2 & 3Par am. Parameter Description Def . Typ. Units

NFS Surf ace-f ast state dens. 0.0 1.E+10 cm̂ -2

XJ Metallurgical j ctn. depth 0.0 1.E-06 m

VMAX Max. drif t v of carr. 0.0 5.E+04 m/ s

XQC Coeff . of ch. Q share 0.0 0.4

DELTA Width eff . on Vthresh 0.0 1.0

©rlc L37-04May2011

Level 2 StaticDevice EquationsAccounts for variation of channel

potential for 0 < y < LFor vds < vds,sat = vgs - Vfb - PHI +

2*[1-sqrt(1+2(vgs-Vfb-vbs)/2]

id,ohmic = [/(1-LAMBDA*vds)] *[vgs - Vfb - PHI - vds/2]*vds -2[vds+PHI-vbs)1.5-(PHI-vbs)1.5]/3

©rlc L37-04May2011

Level 2 StaticDevice Eqs. (cont.)For vds > vds,sat

id = id,sat/(1-LAMBDA*vds)

where id,sat = id,ohmic(vds,sat)

©rlc L37-04May2011

Level 2 StaticDevice Eqs. (cont.)Mobility variationKP’ = KP*[(esi/eox)*UCRIT*TOX /(vgs-VTH-UTRA*vds)]UEXP

This replaces KP in all other formulae.

©rlc L37-04May2011

SPICE ParametersLevel 3Par am. Parameter Description Def . Typ. Units

KAPPA Saturation fi eld f actor 0.2 1.0

ETA Stat. f eedbk on Vthresh 0.0 1.0

THETA Mobility modulation 0.0 0.05 1/ V

DELTA Width eff . on Vthresh 0.0 1.0

BJT Self-heating• Self heating of the transistor is

proportional to the power dissipated.

• Temperature Rise = ΔT = Rth ∙Power

• The VBIC model was developed to simulate the BJT such that the device temperature tracked power dissipation in real time.

• Other circuit simulators which accommodate thermal resistance are– HICUM– MEXTRAM©rlc L37-

04May2011

©rlc L37-04May2011

Rth Estimation for a Small Diode-isolated BJT Device

VBE=0.87 V and VCE=20 V, RTH = 341 C/W

dt

tl

©rlc L37-04May2011

VBIC Model Highlights

Self-heating effects included

Improved Early effect modeling

Quasi-saturation modeling

Parasitic substrate transistor modeling

Parasitic fixed (oxide) capacitance modeling

An avalanche multiplication model included

Base current is decoupled from collector current

©rlc L37-04May2011

2-D Isotherm Plot- Lines Connecting Points of Equal Temperature

2-D Isotherm plots for a structure scaled to be the same as the P10 1X2X1 device.

• The structure of a typical SiGe HBT (Heterojunction Bipolar Transistor) [1]

• The Electrical circuit topology (Cauer network) for the thermal analogy model

Thermal Model of a SiGe HBT

©rlc L37-04May2011

Oxide

©rlc L37-04May2011

One Dimensional Heat Flow in Silicon

•A silicon structure can be sub-divided into several silicon slabs.•Each section contributes to the total Rth and Cth of the structure. If each section is of equal volume, their individual Rth and Cth should be equal in value. •To correspond to uniform heat flow, each section can be represented by a thermal resistance and half the total capacitance on each node of the resistor. Cth

2

Rth

Cth 2

AMBIENT

HEAT

SIL

ICO

NSIL

ICO

N

©rlc L37-04May2011

The Distributed Nature of the Heat Flow

•The corresponding CTh /2 capacitors are aggregated at each node.•Note that the “ambient end” CTh /2 is short-circuited. •The distributed equivalent circuit analogy simulation is obtained from the following network.Rth

n

Cth 2n

Rth n

Cth n

Cth n

Rth n

Rth n

Cth n

Rth = Total Thermal resistance for the silicon structureCth= Total Thermal capacitance of the silicon structuren = number of sections

Atp

cρCth

Ap

k

tRth

t= thicknesskp= thermal conductance

A=areacp= thermal capacitanceρ=density

Comparison of Circuit Analogy to Davinci Simulation

of the Heat FlowConsidering a silicon structure of size 3.7umx2.5um x10um

©rlc L37-04May2011

1.26uCthRthTau18.2nAtp

cρCth 6989A

pk

tRth

Dividing the structure into 10 sections.

n

Cthi

Cthn

Rthi

Rth where i=1,2,3…n,n= number of sections

Dotted line=Davinci simulation measurementSolid line = equivalent circuit simulation

©rlc L37-04May2011

•Converting the 10 element distributed model to a 1 pole model:

RTotal=Rth at ‘dc’ΔQTotal =(cp)(ρ)Tavg

For total heat consumption. 2

CC

is limit the ,n For

CVCV

Th1pole

n

1iii1pole1pole

th1

thith RR1R

n

i

pole

Heat stored corresponds to charge stored for the equivalent circuit.

Approximating the Distributed Circuit With a Single Pole Model

Rth n

Cth 2n

Rth n

Cth n

Cth n

Rth n

Rth n

Cth n

©rlc L37-04May2011

Comparison of Circuit Analogy to Davinci Simulation for Heat Flow

©rlc L37-04May2011

Results from equivalent circuit simulations

Results from Davinci Simulation

Results from device measurement Foster network

Results from device measurement Cauer network

Top of the tub

Top of the oxide

Top of the wafer

(cont’d)

Circuit used for simulations

©rlc L37-04May2011

dt for VBIC-R1.5 model• Model: VBIC-R1.5.

• “selft” flag set to 1.

• No optimization done.

• No external circuit connected.

• Rth=5.8E+0

• Cth=96E-12

©rlc L37-04May2011

VBIC-R1.5 Y11 plot (standard data)

©rlc L37-04May2011

VBIC-R1.5 Y11 plot (standard data)

©rlc L37-04May2011

VBIC-R1.2 Y11 plot (optimized data)• For optimized data refer slide “Model Parameters”. • Circuit used is shown in “Circuit for Y parameters (optimized data)” slide.

fc Τ

fc1= 2E3 7.962E-05fc2=

9.25E4 1.721E-06fc3= 3.2E6 4.976E-08

Fc4=2E3 7.962E-05Fc5=1E5 1.592E-06Fc6=4E6 3.981E-08fc7= 2E3 7.962E-05fc8= 1E5 1.592E-06fc9=4E6 3.981E-08©rlc L37-04May2011

Spreadsheet for Calculating the Rth and Cth• Calculations mentioned in the previous slides have

been implemented in an Excel spreadsheet.• The Cauer to Foster network transformation is done.

• The spreadsheet takes the dimensions of different layers of the devices and gives corresponding Cauer and Foster network values. This enables the calculation of time constants which can be converted into a single pole. The characteristic times for the Foster network appear on a impulse response plot.

©rlc L37-04May2011

Fig. 7. Electrical equivalent Cauer network of the HBT Fig. 8. Electrical equivalent Foster network of the HBT

©rlc L37-04May2011

Effect of Rth on current feedback op-amp settling time

-

+

vIN = 1 V P-P, = 200 -sec

500

500

vOUT

100

max,IN

OUTmax,OUT

Av

tvvOffset

©rlc L37-04May2011

y = 0.0055e-0.1416x

Offset = 0.16%Tau = 7.1 u-sec

y = 0.0039e-0.0749x

Offset = .39%Tau = 13.4 u-sec

0.01%

0.10%

1.00%

0 5 10 15 20 25 30Time after switching (u-sec)

Th

erm

al

sw

itc

hin

g o

ffs

et

as

%

of

Vp

Current Feedback Op Amp Data (LMH6704) Switching Offset

3.3/t4.13/t e%16.0e%39.0model cfoa

3.34.13/%39.07.7/%55.0

%16.0Tau

©rlc L37-04May2011

LMH6550 impulse thermal characteristics

• LeCroy sampling oscilloscope (1M input mode)

• Maximum averaging (10000)• Input nominally +/- 1V with 50 micro-

sec period and 50% duty cycle.• Fractional Gain Error = FGE

1

vv

)t(v)t(v

FGE

max,IN

max,OUT

IN

OUT

©rlc L37-04May2011

vIN Rising Response

y = 0.0362e-111568x

R2 = 0.9707,Tau = 9 micro-sec

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05

0.10%

1.00%

10.00%

vOUT

vIN

FGE

©rlc L37-04May2011

y = 0.0373e-148345x

R2 = 0.9257Tau = 6.7 micro-sec

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.0E+00 5.0E-06 1.0E-05 1.5E-05 2.0E-05

0.10%

1.00%

10.00%

vIN Falling Response

vOUT

vIN

FGE

Current Feedback Op-Amp (CFOA) with Simple Current Mirror (CM) Bias

STICK1

VEE

VEE

VCC

VCC

Q1 Q2

Q3 Q4(stk2-pnp-cm)

Q11 Q12

Q9 Q10 Q17

Q18

Q14

Q13

Q15

Q16

VOZ

VN

STICK2 STICK3 STICK4 STICK5 STICK6

VEE

VCC

Q6

Q5

Q7(stk3-npn-bf)

Q8(stk3-pnp-bf)

VP

RF

200 μA

+1 V

-1 V

sup

©rlc L37-04May2011

Large-signal Output Voltage Transient Analysis for CFOA with

Simple CM Biasing

0 5 10 15 20 25 30 35 40 45-978

-976

-974

-972

-970

-968

Time (s)

Vo

ltag

e (

mV

)

0 5 10 15 20 25 30 35 40 45

1020

1022

1024

1026

1028

Time (s)

Vo

ltag

e (

mV

)

High-to-Low area x1

High-to-Low area x8

Low-to-High area x1

Low-to-High area x8

TT=-5311 V

TT=5313 V

TT=789 V

TT=-789 V

©rlc L37-04May2011

Hypothesis: The Thermal Tail is a Linear Superposition of the Contribution from each

Individual Circuit Stick• The contribution of individual transistor to the total thermal

tail.

• Used six stick classifications according to transistor type and functionality.

i.e. Q10stk3-pnp-bf and Q11stk4-npn-cm

• Enabled the self-heating effect in the stick of interest and disabled the self-heating effect of the remaining transistors.

• Simulated the contribution of each individual stick.

• The total thermal tail simulated is essentially the sum of the individual thermal tail contributions of each circuit stick.

©rlc L37-04May2011

The Hypothesis Supported  Area x1   Area x8

Thermal Tail (uV/V) High-to-Low Low-to-High High-to-Low Low-to-High

stk2-npn-bf (Q5) -822 842 -124 128

stk2-pnp-bf (Q6) -727 712 -101 98

stk2-npn-cm (Q2) -89 91 -11 12

stk2-pnp-cm (Q4) -91 89 -10 9

stk3-npn-bf (Q7) -877 850 -111 106

stk3-pnp-bf (Q8) -783 808 -111 115

stk4-npn-cm (Q12) -1213 1217 -172 173

stk4-pnp-cm (Q10) -1075 1073 -159 158

stk5-npn-bf(Q13) 13 -13 2 -2

stk5-pnp-bf(Q14) -4 4 -1 1

stk5-npn-cm(Q18) 16 -15 2 -2

stk5-pnp-cm(Q17) -5 2 0 0

stk6-npn-bf(Q15) 0 1 0 0

stk6-pnp-bf(Q16) -1 0 0 0

added total -5658 5661 -796 796

simulated total -5311 5313 -789 789©rlc L37-04May2011

©rlc L37-04May2011

References• Fujiang Lin, et al, “Extraction Of VBIC Model for SiGe HBTs

Made Easy by Going Through Gummel-Poon Model”, from http://eesof.tm.agilent.com/pdf/VBIC_Model_Extraction.pdf

• http://www.fht-esslingen.de/institute/iafgp/neu/VBIC/• Avanti Star-spice User Manual, 04, 2001. • Affirma Spectre Circuit Simulator Device Model Equations• Zweidinger, D.T.; Fox, R.M., et al, “Equivalent circuit

modeling of static substrate thermal coupling using VCVS representation”, Solid-State Circuits, IEEE Journal of , Volume: 2 Issue: 9 , Sept. 2002, Page(s): 1198 -1206

Thermal Analogy References

[1] I.Z. Mitrovic , O. Buiu, S. Hall, D.M. Bagnall and P. Ashburn “Review of SiGe HBTs on SOI”, Solid State Electronics, Sept. 2005, Vol. 49, pp. 1556-1567.

[2] Masana, F. N., “A New Approach to the Dynamic Thermal Modeling of Semiconductor Packages”, Microelectron. Reliab., 41, 2001, pp. 901–912.

[3] Richard C. Joy and E. S. Schlig, “Thermal Properties of Very Fast Transistors”, IEEE Trans. ED, ED-1 7. No. 8, August 1970, pp. 586-599.

[4] Kevin Bastin, “Analysis and Modeling of self heating in SiGe HBTs” , Aug. 2009, Masters Thesis, UTA.

[5] Rinaldi, N., “On the Modeling of the Transient Thermal Behavior of Semiconductor Devices”, IEEE Trans-ED, Volume: 48 , Issue: 12 , Dec. 2001; Pages:2796 – 2802.

©rlc L37-04May2011

Simulation … References

• [1] E. Castro, S. Coco, A. Laudani, L. LO Nigro and G. Pollicino, “A New Tool For Bipolar Transistor Characterization Based on HICUM”, Communications to SIMAI Congress, ISSN 1827-9015, Vol. 2, 2007.

• [2] K. Bastin, “Analysis And Modeling of Self Heating in Silicon Germanium Heterojunction Bipolar Transistors”, Thesis report, The University of Texas at Arlington, August 2009.

©rlc L37-04May2011

AICR Team at University of Texas Arlington - Electrical

EngineeringCurrent

• Ronald L. Carter, Professor

• W. Alan Davis, Associate Professor

• Howard T. Russell, Senior Lecturer

• Ardasheir Rahman1

• Xuesong Xie3

• Arun Thomas-Karingada2

• Sharath Patil2

• Valay Shah2

Earlier Contributors• Kevin Bastin, MS• Abhijit Chaugule, MS• Daewoo Kim, PhD• Anurag Lakhlani, MS• Zheng Li, PhD• Kamal Sinha, PhD

1PhD Student2MS Student3Post-doctoral Associate

©rlc L37-04May2011

©rlc L37-04May2011

References

• CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995.

• M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993.

• **M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986.

• *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997