Nanowire Sensor, Nano-Tera Conference 2013

download Nanowire Sensor, Nano-Tera Conference 2013

of 41

Transcript of Nanowire Sensor, Nano-Tera Conference 2013

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    1/41

    1

    PI: Christian Schnenberger

    Department of Physics andSwiss Nanoscience Insitute

    @ University of Basel

    Nanowire Sensor

    Integrateable Si Nanowire Sensor

    Platform for Ion- and Biosensing

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    2/41

    2

    More than Moore

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    3/41

    3

    Electronic Biochip Concept

    label free, disposable (cheap) electronic chip

    biomolecular-

    molecular

    interface

    electronic-side

    electronic

    interface

    Lieber et al. Science 2001

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    4/41

    4

    Ion Sensitive FET (IS-FET)

    source drain

    channel conductance (i.e. threshold)depends on gate charge

    p-channel, threshold regime

    (gate potential)

    --

    -

    -

    (source-draincurrent)

    --

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    5/41

    5

    Ion Sensitive FET (IS-FET)

    source drain

    channel conductance (i.e. threshold)depends on gate charge

    (gate potential)

    (source-draincurrent)

    -

    - -

    -

    - -

    p-channel, threshold regime

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    6/41

    6

    Ion Sensitive FET (IS-FET)

    source drain

    channel conductance (i.e. threshold)depends on gate charge

    (gate potential)

    (source-draincurrent)

    -

    -

    -

    -- -

    -

    e.g. heparime binding on protamie

    SHIFT

    p-channel, threshold regime

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    7/41

    7

    Concept & Team

    AnalyteReceptor

    TransducerSignal processing

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    8/41

    8

    Nanowire fabrication

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    9/41

    9

    Nanowire fabrication

    PMMA

    80nm

    145nm

    ~10nm

    p-type (100) SOI

    SiO2

    Si handle wafer

    Si

    step 1.

    step 4.+5. step 6.+7.

    step 11.to14.

    metal

    SU-8

    step 2.+3.

    wire length:6um

    width: 100nm-1um

    silicon

    silicon oxide

    resist

    metal

    ALD oxide

    epoxy

    100nm

    Weff= Wtop + 2Wwalls

    Kristine Bedner et al.

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    10/41

    10

    Nanowire fabrication

    operation enhancement mode

    insulator Layer HfO2, tins = 5 nm,

    poly-Si Gates wg = 25 nm, hg = 50 nm

    fin Body hSi = 100 nm, wSi = 50nm

    doping Na = 51016

    A partially double-gated fin field effect transistor (DG-FinFET) is the

    electronic sensing architecture.

    S.Rigante, M.Najmzadeh and A. M. Ionescu, EPFL

    _

    _

    _

    _

    _

    _

    _

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    11/41

    11

    Nanowire fabrication

    Solid nanowire array

    Particle based nanowire array

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    12/41

    12

    SOI-based NWs

    48 silicon nanowires/sample

    top width: 100nm 1m

    5m

    nanowire

    drain

    micro-

    channel

    AlSi contacts

    wire

    bonds

    back gatecontact

    epoxy

    SU-8

    10mm

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    13/41

    13

    FinFET NWsOne die incorporates:

    o FinFET based sensors and metal gate transistors

    (single and multi wires)

    o Amplifying architectures based

    on two FinFET components

    Au 25 m wire ball bonding

    Epotecny conductive glue

    SU-8

    AlSi connections

    Sensor

    FinFETs

    SU-8

    AlSi

    SiO2

    Si Fin

    Si Bulk

    PtA-B

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    14/41

    14

    Microfluidics

    Devices location in -fluidic channels

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    15/41

    15

    in the lab in operation

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    16/41

    16

    System Concept

    PCBSi-NW chip CMOS chip

    Micro fluidics

    low-noise circuitry

    on chip biasing and modulation technique

    A/D conversion

    nanowires can be integrated on the chip orcan be interfaced via a PCB board

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    17/41

    17

    System Architecture

    Paolo Livi et al.

    16 nanowires can be interfaced in parallel voltage across each nanowire is kept constant, and the current flowing through is measuredTwo different analog-to-digital converter architectures are used (12 bits resolution) Current range: 1 nA to 5 A

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    18/41

    18

    CMOS readout

    Paolo Livi et al.

    Power consumption: 35 mW

    I2F resolution:

    8 bits (50 pA

    1 A range) 10 bits (10 nA 400 nA range)

    Sigma-Delta resolution: 12 bits in the range 2 A

    18

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    19/41

    19

    System Architecture

    Nanowire Sensor Chip

    CMOS Readout ChipPaolo Livi et al.

    VDS = 200 mV

    sigma-delta modulator

    read-out of 4 Si-NW, 9.-10. Nov. 2011

    S

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    20/41

    20

    System Architecture

    Cross section: 31 nm x 15 nm

    Length: 380 m Patterned via e-beam and lift-off

    SU-8 microchannel for

    measurement in liquid

    0 50 100 150 200 250 300 350 400 450 500142

    143

    144

    145

    146

    Time [s]

    Resistance[k

    ]

    Average

    Measurement

    Adsorption of Cl-

    (resistance

    increases)

    Adsorption of Na+

    (resistance

    decreases)

    Reference Electrode

    Voltage

    + 500 mV

    - 500 mV

    0 V

    S

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    21/41

    21

    Sensor parameters

    o sensitivity

    o selectivityo referencing

    o resolution

    o signal-to-noise

    o reproducibility

    o stability

    o drift

    o response time

    extensive studies addressing these parameters using

    Si nanowires with ALD passivation

    S t

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    22/41

    22

    Sensor parameters

    -0.5 0.0 0.5 1.0 1.5 2.00

    2

    4

    6

    8

    Vsd

    =0.1V

    NW 1

    NW 2

    G(S)

    Vref

    (V)

    Vbg

    =-6V

    pH 7

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    width =1m

    G(S)

    120mV/dec

    G(

    S)

    G(S)

    Vref (V)

    reproducibility

    pH response & sensitivity

    -0.5 0.0 0.5 1.0 1.5 2.00.0

    1.5

    3.0

    4.5

    6.0

    7.5

    9.0

    120mV/dec

    Vsd

    =0.1V

    G(S)

    Vref(V)

    width =1m

    pH 3, 5, 7, 9

    Vbg

    =-6V

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    G(S

    )

    G(

    S)

    G(S

    )

    Vref (V)

    with good ALD oxides, HfO2 and Al2O3always reach maximum sensitivity of

    ~ 60 mV/pH

    (low p-doped wires in accumulation with

    p+-implanted and alloyed contacts)

    N t li it d l bilit

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    23/41

    23

    Nernst limit and scalability

    Vbg

    VrefVlg

    A

    V

    drain

    source

    VsdA

    max sensitivity down to the smallestnanowire with < 100 nm in width both

    for Al2O3 and HfO2

    K. Bedner et al.

    S t

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    24/41

    24

    Sensor parameters

    we have

    a) a transistor that maximally responds to protons (sensor)with high reproducibility and low hysteresis

    Si ISFET f

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    25/41

    25

    Si-ISFET: reference

    octadecyldimethylmethoxysilane

    (C18 alkane silane) passivation

    A. Tarasov et al. Langmuir 28, 9899 (2012)

    0 1 2 3 4 5 6 70

    20

    40

    60

    80

    100

    120

    contactangle[]

    time [days]

    Contact angle measurements:

    S t

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    26/41

    26

    Sensor parameters

    we have

    a) a transistor that maximally responds to protons (sensor)with high reproducibility and low hysteresis

    b) a transistor that does not respond to protons (reference)

    S ifi i

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    27/41

    27

    Specific ion sensor

    Detection of potassium

    - differential signal: active and control channel

    Vth= (Vth,active Vth,control) = 39 mV/dec,

    negative Vth

    , due to adsorption of positively

    charged K+

    - selective detection

    control experiment: no response to Na+

    M. Wipf et al.

    S ifi i

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    28/41

    28

    Specific ion sensor

    Detection of sodium

    - differential measurement setup

    elimination of non-specific Cl- ion adsorptoin,

    drift, etc.Vth= 44 mV/dec

    - selective detection

    control experiment: no response to K+

    S t

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    29/41

    29

    Sensor parameters

    we have

    a) a transistor that maximally responds to protons (sensor)with high reproducibility and low hysteresis

    b) a transistor that does not respond to protons (reference)

    c) a transistor that can sense other ions selectively

    N i M t

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    30/41

    30

    Noise Measurements

    A. Tarasov and K. Bedner et al. , e.g. APL, 98, 012114, (2011)

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.50

    1

    2

    3

    4

    5

    6

    100nm

    200nm

    400nm

    1m

    G(S)

    Vgate

    (V)

    Al2O

    3, V

    sd=0.1V

    1 10 10010

    -15

    10-14

    10-13

    10-12

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    1.16M

    1.49M

    3.14M

    5.73M

    9.26M

    14.07M

    28.14M

    58.60M

    321k

    321k

    498k

    802k

    S

    v(V2 rm

    s/Hz)

    f (Hz)

    67mM, pH 7, Vsd

    =0.1V

    Wtop

    =100nm, Al2O

    3 1/f

    time

    signal

    FFT

    Noise Measurements

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    31/41

    31

    Noise Measurements

    - SVG noise increases with decreasing SiNW width

    after normalization by SVGWeff : same noise for all the nanowire widths

    - sensor resolution: SVG= 110-5V/Hz1/2, which corresponds to ~100ppm of pH

    101

    102

    103

    10-10

    10-9

    SVG

    at10Hz(V2/Hz)normalizedbyW

    eff

    100nm

    200nm

    400nm1m

    RWeff

    (cm)

    pH 7 solution

    SiNW regimecontact regime

    101

    102

    103

    10-10

    10-9

    SVG

    at10Hz(V2/Hz)

    100 nm

    200 nm

    400 nm1 m

    RWeff

    (cm)

    pH 7 solution

    noise-source = trapping detrapping noise

    Sensor parameters

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    32/41

    32

    Sensor parameters

    we have

    a) a transistor that maximally responds to protons (sensor)with high reproducibilty and low hysteresis

    b) a transistor that does not respond to protons (reference)

    c) a transistor that can sense other ions selectively (and fast)

    d) resolution can reach 100ppm/sqrt(Hz) for a 1m-wide wire.

    Note: the resolution (signal-to-noise) is better for wider wires !!!(nano is not always better)

    Reproducibility & Stability

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    33/41

    33

    Reproducibility & Stability

    -0.5 0.0 0.5 1.0 1.5 2.00

    2

    4

    6

    8

    Vsd

    =0.1V

    NW 1

    NW 2

    G(

    S)

    Vref

    (V)

    Vbg

    =-6V

    pH 7

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    width =1m

    G(S)

    120mV/dec

    0 24 48 72 96 1200.200

    0.205

    0.210

    0.215

    0.220

    0.225

    0.230

    0.235

    Vth

    [V]

    Time (h)

    HfO2

    gate oxide

    pH 6 buffer solution

    Stability measurements 5.5 days

    FinFET sample (EPFL) 8nm HfO2 gate oxpH6 buffer solution

    4 different nanowires Max. Drift ~2mV/day differential drift ~ 0mV

    Sensor parameters

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    34/41

    34

    Sensor parameters

    we have

    a) a transistor that maximally responds to protons (sensor)with high reproducibilty and low hysteresis

    b) a transistor that does not respond to protons (reference)

    c) a transistor that can sense other ions selectively (and fast)

    d) resolution can reach 100ppm/sqrt(Hz) for a 1m-wide wire.

    Note: the resolution (signal-to-noise) is better for wider wires !!!(nano is not always better)

    e) reproducible and high long term stability

    Sensor parameters

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    35/41

    35

    Sensor parameters

    we have

    a) a transistor that maximally responds to protons (sensor)with high reproducibilty and low hysteresis

    b) a transistor that does not respond to protons (reference)

    c) a transistor that can sense other ions selectively (and fast)

    d) resolution can reach 100ppm/sqrt(Hz) for a 1m-wide wire.

    Note: the resolution (signal-to-noise) is better for wider wires !!!(nano is not always better)

    e) reproducible and high long term stability

    what about biomolecules ???

    Smallmolecule

    Si

    HN

    O

    O

    O

    O

    O

    HO

    OHOH

    NHAc

    ~10 nm

    ~1 nm

    Antibody

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    36/41

    Protein Sensing II (FimH)

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    37/41

    37

    Protein Sensing II (FimH)

    strongly lectin binding glycoconjugate ligand inactive glycoconjugate control

    buffer: 20mM HEPES, 150 mM NaCl, 1mM CaCl2, pH=7.4

    2 g/mL =107 nM FimH 10 g/mL = 536 nM FimH

    O

    HOHO

    OH

    O

    OH

    OH

    O

    2 g/mL =107 nM FimH 10 g/mL = 536 nM FimH

    Jolanta Kurz, Arjan Odedra Arjan,

    Florian Binder and Giulio Navarra

    Conclusions

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    38/41

    38

    Conclusions

    1. maximum sensitivity (Nernst limit) can be achieved (Al2O3 and HfO2)

    2. oxide surfaces (Al2O3 and HfO2) can be highly selective to protons(yielding ideal pH sensor up to buffer conc. of 10 mM)

    3. maximum sensitivity also for the narrowest nanowires

    4. charge detection limit best for the narrowest wire, but

    5. highest resolution in concentration best for wide wires

    6. full passivation possibleideal reference electrode

    7. full sensitivity with high selectivity to other ions can be achieved (here

    tested K) on functionalized electrodes

    8. unclear yet (and also in the literature) whether useful for direct biomolecule

    sensing

    ISFET application

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    39/41

    39

    ISFET application

    ion-torrent

    Thanks to

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    40/41

    40

    Thanks to....

    Michel Calame

    Uni Basel

    physics

    Oren

    KnopfmacherWangyang Fu

    Alexey TarasovChristian

    Schnenberger

    Beat Ernst

    EPFL

    Adrian Ionescu Kristine Bedner

    Bernd

    DielacherJolanta KurzUwe Pieles

    Andreas

    HierlemannPaolo Livi

    Arjan Odedra

    Sara RiganteMohammadNajmzadeh

    Janos Vrs

    Robert

    MacKenzie

    Yihui Chen

    BirgitPivnranta

    VitaliyGuzenko

    ChristianDavid

    ETHZ UniBas

    pharma

    Jens Gobrecht

    PSI

    D-BSSEFHNW

    Matthias Sreiff

    Sensirion

    Mathias Wipf

    RenatoMinamisawa

    Ralph Stoop

    Floriian Binder

    Thanks to

  • 7/28/2019 Nanowire Sensor, Nano-Tera Conference 2013

    41/41

    Thanks to ...

    Felix Mayer

    CEO Sensirion

    Matthias Sreiff

    http://localhost/var/www/apps/conversion/tmp/scratch_4/Sensirion_Support.ppt