Nano-Tera NextStep 2015: Collaborative Research

7
1 Drill integrated neuro-monitoring for minimally invasive robotic cochlear implantation > Background Drill passes within 0.3 – 1 mm of facial nerve > Facial nerve safety – preliminary work Neuromonitoring for FN protection (detect FN proximity) Optimal stimulation protocol determined in sheep Custom neuromonitoring probe detects FN (<0.1 mm) > Project Goal Drill integrated stimulation for conitinuous FN monitoring > Proposal Protocol verification in humans (medical grade EMG device required) (Neurosign device, 17000 CHF ) Drill bit insulation coating for integrated stimulation electrodes (Student 2.5 months ~ 14,000 CHF) Total budget 31,000 CHF, project duration 6 months > Collaborators Marco Caversaccio, Department of ENT, Unibe Jorg Patscheider, Coatings department, Empa Anode 1 Anode 2 Anode 3 Cathode -1 0 1 0.1 0.3 0.5 1 1.5 Stimulus threshold (mA) Axial distance (mm) Sheep 2 Trajectory 7 LD = 0 d = 2 d = 4 d = 7 Mono FN Juan Ansó, May 2015

description

 

Transcript of Nano-Tera NextStep 2015: Collaborative Research

Page 1: Nano-Tera NextStep 2015: Collaborative Research

1

Drill integrated neuro-monitoring for minimally invasive robotic cochlear implantation> Background

— Drill passes within 0.3 – 1 mm of facial nerve

> Facial nerve safety – preliminary work— Neuromonitoring for FN protection (detect FN proximity)— Optimal stimulation protocol determined in sheep— Custom neuromonitoring probe detects FN (<0.1 mm)

> Project Goal— Drill integrated stimulation for conitinuous FN monitoring

> Proposal— Protocol verification in humans (medical grade EMG device

required) (Neurosign device, 17000 CHF )— Drill bit insulation coating for integrated stimulation

electrodes (Student 2.5 months ~ 14,000 CHF)— Total budget 31,000 CHF, project duration 6 months

> Collaborators— Marco Caversaccio, Department of ENT, Unibe— Jorg Patscheider, Coatings department, Empa

Anode 1Anode 2Anode 3

Cathode

-1 0 10.10.30.5

1

1.5

Stim

ulus

thre

shol

d (m

A)

Axial distance (mm)

Sheep 2Trajectory 7LD = 0

d = 2d = 4d = 7Mono

FN

Juan Ansó, May 2015

Page 2: Nano-Tera NextStep 2015: Collaborative Research

NextStep - Scientific Collaboration04.05.2015 - Tobia Brusa, ISTB, University Bern

> Functional anatomy of Fecal Incontinence (FI) — Characterization of continence organ’s anatomy and biomechanics in

patients suffering from fecal incontinence (FI).— Prof. Dr. Med. Radu Tutuian, chief physician gastroenterology at

Tiefeneau Hospital Bern— Chf: ~30’000.-

> Extension of current Nano-Tera study aiming at defining design specifications of implant based on healthy volunteers.

> Main benefit: add clinical component to the project— Comprehensive assessment of contraction and compliance— Integration of imaging and functional data— Establishing normal (healthy subjects vs. patients)— Develop new treatment concepts

1

Page 3: Nano-Tera NextStep 2015: Collaborative Research

Digital Ultrasound Head[UltrasoundToGo] Pascal Alexander Hager

Cable64‐256 coax

Image Sources:Ibmt.fraunhofer.de

healthcare.philips.comwww.akutron.com/products

Digital high‐speed link 

Project Scope

Transducer head Backend SystemAnalog Frontend Digital Processing

Conventional 2D Ultrasound System:

Piezoelectric Transducer Array

Frontend HDI PCB(commercial components)

Backend SystemFPGA Board

(Tablet/Smartphone)

Ultrasound DivisionFraunhofer IBMT

ETHZ IIS

Digital Processing

Goal:• Explore new digital ultrasound head concept.Collaboration:• Build two heads, collaborators provide parts• Funding (30k): PCB, Components, IBMT AssistanceTime Table:• 6 Month, 50% PhD Student IIS• 10% support personnel IIS/IBMT

largest ultrasound research unit Europe more than 20 years experience

Page 4: Nano-Tera NextStep 2015: Collaborative Research

Main collaborator: Tommaso Nardi, Laboratory of Composite and Polymer Technology, EPFL Planning work: Work with different polymers and methods for embedding GaAs NWs on equipment of Polymer Lab in EPFLOur part: provide test samples with nanowires, analysis of experiments with SEM, OM and other techniques.Collaborator part: provide new polymer materials, expertise of methods of embedding NWs in polymer, provide equipment for experimentsFunding: 5.000 chf

Flexible PDMS film helps to transfer GaAs nanowire forest from Si substrate to surface of c-Si solar cell

1st Idea: Reliability of NW-polymer composite

Problem with PDMS hardness –film with thickness 5 µm is very fragileSolution: perform search and analysis of different range of polymers with professional polymer chemist

New polymer material – UV curable polyester. • High transparence• Low viscosity• Good adhesion• Good hardness

Functional c-Si/GaAs nanowire tandem solar cell

Dmitry Mikulik, EPFL

Page 5: Nano-Tera NextStep 2015: Collaborative Research

2nd Idea: Reliability of GaAs NW solar cells by analyzing spectral and electrical characteristics

Main collaborator: Mikhail Mintairov, Photovoltaics Lab, Ioffe institute, RussiaPlanning work: Measurements and analysis of results of pilot devices in Photovoltaics lab in Ioffe instituteOur part: provide pilot devices based on GaAs NWs, organize joint workshop/visit to discuss resultsCollaborator part: provide different measurements of solar cells, analysis of measurementsFunding: 10.000 chf

Problem: Reliability of GaAs NW based solar cellsSolution: To realize perspective and weak points of GaAs NW based solar cell - spectral, electric and optical measurements must be performed.

Optical measurements: EQY – Initial

measurements Reflectance — give

information about surface quality

IQY - depends on structure and p-n junction optical properties

Electro-luminescence pattern determination at different temperatures:Could be applied to evaluate the uniformity of nanowires photo-electrical properties

T= 25C, J=100 mA/cm2 T= -190C, J=5 mA/cm2 T= -190C, J=5.5 mA/cm2

Electrical measurements: IV curves in a wide range of irradiance

allows to obtain a number of important characteristics:

Voc-Jsc dependence to form p-n junction IV curve

resistive losses IV as a difference between p-n junction and practical IV curve

GaAs p-i-n nanowires embedded in flexible PDMS film would play a role of second solar cell, placed on top of conventional c-Si solar cell

ITO

ITO

c‐Si solar cell

Sun light

PDMS

Functional c-Si/GaAs nanowire tandem solar cell

Dmitry Mikulik, EPFL

Page 6: Nano-Tera NextStep 2015: Collaborative Research

LBB‐ Conductive

polymers‐ Implantables

MNS‐Micro & Nanofabrication

‐ Wearables

APPROACH

• A portable EEG system (12k)• Biocompatibility studies (8k)• Clinical evaluation (10k)

FUNDING

Embedding conductivenanostructures in softsubstrates

PARTNERS

Soft & dry biopotential electrodes

GOAL

Contact: Moritz Thielen, [email protected]

Flurin Stauffer Moritz Thielen

MOTIVATION

• Wearable health monitoring• Brain‐computer interfaces• Poor performance of

commercial systemsEnobio from Neuroelectrics® 

Page 7: Nano-Tera NextStep 2015: Collaborative Research

Facial nerve neuro‐monitoring is used to improve the safety of drilling in the bone for DCA.

Bone electric properties required to predict the distance between drill bit and nerves.

Budget ~ 30’000 CHF  Cost of personnel & material Seed project towards snf proposal

Development of an impedance setup to study electric and electrochemical bone tissue properties.

Electro‐chemical effects Contact effects Voltage/frequency dependent Affected by the type of electrolyte

Better characterization of these effects Collaboration with Department of Chemistry and 

Biochemistry at University of Bern & University of Budapest (P. Broeckmann, H. Siegenthaler)

Setup for reliable measurement of the electrochemical properties (optimize stray capacitance, contact interface, signal/noise ratio, waveform…)

Thomas Wyss Balmer ISTB University of Berne