EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor...

39
EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Transcript of EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor...

Page 1: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

EE5342 – Semiconductor Device

Modeling and Characterization

Lecture 25April 19, 2010

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 2

MOSFET equivalentcircuit elements

OxOxOxgdOxgs 'WLCC ,C31

C ,C32

C

Fig 10.51*

Page 3: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 3

n-channel enh.circuit model

G

D

B

SCgs

Cgd

Cgb

CbsCbd

RD

RG

RB

RB

RDS

IdrainDSS DSD

Page 4: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 4

MOS small-signal equivalent circuitFig 10.52*

Page 5: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 5

MOSFET circuitparameters

region ohmic ,VL

'CWg

saturation ,VVL

'CWg

V

Ig

cetancTranscondu

DSOxn

mL

TGSOxn

ms

VGS

Dm

DS

Page 6: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 6

MOSFET circuitparameters (cont)

ohmic ,VVVL

'CWg

saturation ,0g

VI

g

econductanc drain or Output

DSTGSOxn

dL

ds

VDS

Dd

GS

Page 7: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 7

Substrate bias effect on VT (body-effect)

pSBpOx

aSiSBT

SBTTa

SBpmaxd,

Ox

maxd,apFBST

T

2V2'C

Nq20VV

VVV so , qN

V22x

where , 'C

xNq2VVV

Source to relative be ncalculatio V Letting

Page 8: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 8

Body effect dataFig 9.9**

Page 9: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 9

Fully biased n-channel VT calc

0V ,

qN

VV22x

,xNqQ' ,0Nn

lnV

VV'C

'Q2VVV

VV :substratep

a

sBpmaxd,

maxd,amaxd,a

itp

FBOx

max,dpFBsT

Tthreshold at ,G

Page 10: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 10

Values for ms

with silicon gate

i

dt

g

d

Ct

d

CtSi

gSims

i

at

g2i

aCt

2i

aCtSiSims

nN

lnVq2

E

NN

lnV :Note

NN

lnVq

E :Si-n to poly p

nN

lnVq2

E

n

NNlnV :Note

n

NNlnV :Si-p to poly n

Page 11: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 11

Q’d,max and xd,max forbiased MOS capacitor

Fig 8.11**

xd

,max (

mic

ron

s)

|Q’ d

,max|/

q (

cm-2

)

Page 12: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 12

I-V relation for n-MOS

2TGSOxn

sat,D

sat,DSDS

Lys,sat,DS

sat,DSTGDS

2DSDSTG

OxnD

VVLW

2'C

I

VV for const is

curr. channel that assume

0n' ,V At

physical.-non is result

,VVVV

for Note .VVVV2LW

2'C

I

ID

VDSVDS,sat

ID,sat

ohmic

non-physical

saturated

Page 13: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 13

MOS channel-length modulationFig 11.5*

Page 14: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 14

Analysis of channellength modulation

DS2

TGSOxn

satD

satDSDSDSsatDSp

DSsatDSpa

Si

DD

V1VVLW

2C

I

VVV , V2

VV2qN2

L

ILL

LI so ,modulation length

channel the change DR the Assume

'

'

,

,,

,

Page 15: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 15

Channel length mod-ulated drain charFig 11.6*

Page 16: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 16

Associating theoutput conductance

ID

VDSVDS,sat

sat,D

DS

sat,Dsat,ds

VDS

Dd

DS2

TGSOxn

sat,D

I

V1

Ig

VI

g

V1VVLW

2'C

I

GS

sat,dsg

slopeID,sat

Page 17: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 17

MOSFET circuitparameters

region ohmic ,VL

'CWg

saturation ,VVL

'CWg

V

Ig

cetancTranscondu

DSOxn

mL

TGSOxn

ms

VGS

Dm

DS

Page 18: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 18

Estimating LAMBDA

0V,

qN

VV22x

,V

x

x1

VL

L1

is of tioninterpreta The

V1VVLW

2'C

I

SBa

SBDSp

maxd,

DS

max,d

max,dDS

DS2

TGSOxn

sat,D

Page 19: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 19

e-e- e- e- e- + + + + + + + + + +

+ +

n-channel enhancementMOSFET in ohmic region

0< VT< VG

VB < 0

EOx,x> 0

Acceptors

Depl Reg

VS = 0 0< VD< VDS,sat

n+ n+

p-substrate

Channel

e- channel ele + implant ion

Page 20: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 20

Subthreshold conduction• Below O.S.I., when the total band-

bending < 2|p|, the weakly inverted channel conducts by diffusion like a BJT.

• Since VGS>VDS, and below OSI, then Na>nS >nD, and electr diffuse S --> D

t

DS

t

GSsubthresh,D V

Vexp1

VV

expI

Electron concentration at Source

Concentration gradient driving diffusion

Page 21: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 21

Subthreshold current data

Figure 11.4*

Figure 10.1**

Page 22: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 22

Mobility variationdue to Edepl

Figures 11.7,8,9*

31

0

eff0eff E

E

Page 23: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 23

Velocity saturationeffects

L2v

f

vWCg

E as vv So

v

E1

vv limit" speed"

satT

satOxsat,m

sat

212

sat

eff

eff

thsat

Figure 11.10*

Page 24: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 24

SPICE mosfet Model Instance CARM*, Ch. 4, p. 290M MOSFET

General Form

M<name> <drain node> <gate node> <source node>+ <bulk/substrate node> <model name>+ [L=<value>] [W=<value>]+ [AD=<value>] [AS=<value>]+ [PD=<value>] [PS=<value>]+ [NRD=<value>] [NRS=<value>]+ [NRG=<value>] [NRB=<value>]+ [M=<value>]

Examples

M1 14 2 13 0 PNOM L=25u W=12uM13 15 3 0 0 PSTRONGM16 17 3 0 0 PSTRONG M=2M28 0 2 100 100 NWEAK L=33u W=12u+ AD=288p AS=288p PD=60u PS=60u NRD=14 NRS=24 NRG=10

L = Ch. L. [m]W = Ch. W. [m]AD = Drain A [m2]AS = Source A[m2]NRD, NRS = D and S diff in squares

M = device multiplier

Page 25: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 25

CARM*, Ch. 4, p. 99Model Forms

.MODEL <model name> NMOS [model parameters]

.MODEL <model name> PMOS [model parameters]

As shown in Figure 11, the MOSFET is modeled as an in tr insic MOSFET with ohmic resistances in series with the drain , source, gate, and bulk (substrate). There is also a shunt resistance (RDS) in parallel with the drain-source channel.

[L=<value>] [W=<value>] cannot be used in conjunction with Monte Carlo analysis .

The simulator provides four MOSFET device models, which differ in the formulation of the I-V characteristic. The LEVEL parameter selects between di fferent models :

LEVEL=1 is the Shichman-Hodges model (see reference [1])LEVEL=2 is a geometry-based, analytic model (see reference [2])LEVEL=3 is a semi-empirical, short-channel model (see reference [2])LEVEL=4 is the BSIM model (see reference [3])LEVEL=5 is the BSIM3 model (see reference [7] Version 1.0)LEVEL=6 is the BSIM3 model (see reference [7] Version 2.0)

L and W are the channel length and width, and are decreased to get the effective channel length and width. L and W can be specified in the device, model, or .OPTIONS statements. The value in the device statement supersedes the va lue in the model sta tement, which supersedes the value in the .OPTIONS statement.

Page 26: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 26

SPICE mosfet model levels• Level 1 is the Schichman-Hodges

model• Level 2 is a geometry-based,

analytical model• Level 3 is a semi-empirical, short-

channel model• Level 4 is the BSIM1 model• Level 5 is the BSIM2 model, etc.

Page 27: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 27

SPICE ParametersLevel 1 - 3 (Static)Par am. Parameter Description Def . Typ. Units

VTO Zero-bias Vthresh 1 1 V

KP Transconductance 2.E-05 3.E-05 A/ V 2̂

GAMMA Body-eff ect par. 0.0 0.35 V 1̂/ 2

PHI Surf ace inversion pot. 0.6 0.65 V

LAMBDA Channel-length mod. 0.0 0.02 1/ V

TOX Thin oxide thickness 1.E-07 1.E-07 m

NSUB Substrate doping 0.0 1.E+15 cm̂ -3

NSS Surf ace state density 0.0 1.E+10 cm̂ -2

LD Lateral diff usion 0.0 8.E-05 m

Page 28: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 28

Par am. Parameter Description Def . Typ. Units

TPG Type of gate material* 1 1

UO Surf ace mobility 600 700 cm̂ 2/ V-s

I S Bulk j ctn. sat. curr. 1.E-14 1.E-15 A

J S Bulk j ctn. sat. curr. dens. A/ m̂ 2

PB Bulk junction potential 0.8 0.75 V

RD Drain ohmic resistance 0 10 Ohms

RS Source ohmic resistance 0 10 Ohms

RSH S/ D sheet ohmic res. 0 10 Ohms/ sq

SPICE ParametersLevel 1 - 3 (Static)

* 0 = aluminum gate, 1 = silicon gate opposite substrate type, 2 = silicon gate same as substrate.

Page 29: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 29

SPICE ParametersLevel 1 - 3 (Q & N)Par am. Parameter Description Def . Typ. Units

CJ Zero-bias bulk cap./ A 0 1.E-09 Fd/ m̂ 2

MJ Bulk j ctn. grading coeff . 0.5 0.5

CJ SW Zero-bias perimeter C/ l 0 1.E-09 Fd/ m

MJ SW Per. C grading coeff . 0.5 0.5

FC For.-bias cap. coeff . 0.5 0.5

CGBO Gate-bulk overlap C/ L 0 2.E-10 Fd/ m

CGDO Gate-drain overlap C/ L 0 4.E-11 Fd/ m

CGSO G-S overlap C/ L 0 4.E-11 Fd/ m

AF Flicker-noise exp. 1 1.2

KF Flicker-noise coeff . 0.0 1.E-26

Page 30: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 30

Level 1 Static Const.For Device EquationsVfb = -TPG*EG/2 -Vt*ln(NSUB/ni)

- q*NSS*TOX/eOxVTO = as given, or

= Vfb + PHI + GAMMA*sqrt(PHI)KP = as given, or = UO*eOx/TOXCAPS are spice pars., technological

constants are lower case

Page 31: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 31

Level 1 Static Const.For Device Equations = KP*[W/(L-2*LD)] = 2*K, K not spiceGAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni)ISD = as given, or = JS*AD

ISS = as given, or = JS*AS

Page 32: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 32

Level 1 Static Device Equationsvgs < VTH, ids = 0VTH < vds + VTH < vgs, id = KP*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds)VTH < vgs < vds + VTH, id = KP/2*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds)

Page 33: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 33

SPICE ParametersLevel 2Par am. Parameter Description Def . Typ. Units

NEFF Total channel chg coeff . 1 5

UCRI T Critical E-fi eld f or mob. 1.E+04 1.E+04 V/ cm

UEXP Expon. coeff . f or mob. 0 0.1

UTRA Transverse fi eld coeff . 0 0.5

Page 34: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 34

SPICE ParametersLevel 2 & 3Par am. Parameter Description Def . Typ. Units

NFS Surf ace-f ast state dens. 0.0 1.E+10 cm̂ -2

XJ Metallurgical j ctn. depth 0.0 1.E-06 m

VMAX Max. drif t v of carr. 0.0 5.E+04 m/ s

XQC Coeff . of ch. Q share 0.0 0.4

DELTA Width eff . on Vthresh 0.0 1.0

Page 35: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 35

Level 2 StaticDevice EquationsAccounts for variation of channel

potential for 0 < y < LFor vds < vds,sat = vgs - Vfb - PHI +

2*[1-sqrt(1+2(vgs-Vfb-vbs)/2]

id,ohmic = [/(1-LAMBDA*vds)] *[vgs - Vfb - PHI - vds/2]*vds -2[vds+PHI-vbs)1.5-(PHI-vbs)1.5]/3

Page 36: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 36

Level 2 StaticDevice Eqs. (cont.)For vds > vds,sat

id = id,sat/(1-LAMBDA*vds)

where id,sat = id,ohmic(vds,sat)

Page 37: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 37

Level 2 StaticDevice Eqs. (cont.)Mobility variationKP’ = KP*[(esi/eox)*UCRIT*TOX /(vgs-VTH-UTRA*vds)]UEXP

This replaces KP in all other formulae.

Page 38: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 38

SPICE ParametersLevel 3Par am. Parameter Description Def . Typ. Units

KAPPA Saturation fi eld f actor 0.2 1.0

ETA Stat. f eedbk on Vthresh 0.0 1.0

THETA Mobility modulation 0.0 0.05 1/ V

DELTA Width eff . on Vthresh 0.0 1.0

Page 39: EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter ronc@uta.edu

L25 04/19/10 39

References

• CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995.

• M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993.

• **M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986.

• *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997