EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter...

24
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc

Transcript of EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter...

Page 1: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

EE 5340Semiconductor Device TheoryLecture 08 – Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc

Page 2: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

2

Second Assignment

• Submit a signed copy of the document posted at

www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

Page 3: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

3

Test 1 – Tuesday 22Feb11• 11 AM Room 129 ERB• Covering Lectures 1 through 9• Open book - 1 legal text or ref.,

only.• You may write notes in your book.• Calculator allowed• A cover sheet will be included with

full instructions. For examples see http://www.uta.edu/ronc/5340/tests/.

Page 4: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

4

Diffused or ImplantedIC Resistor (Fig 2.451)

Page 5: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

5

An IC Resistor with L = 8W (M&K)1

Page 6: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

6

Typical IC dopingprofile (M&K Fig. 2.441)

Page 7: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

7

Mobilities**

Page 8: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

8

IC Resistor Conductance

g1

R dxxnxqg

dxxnxqLW

G

dxLW

xnxqdG

s

x

0n

x

0n

n

j

j

,

Page 9: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

9

An IC Resistor with Ns = 8, R = 8Rs (M&K)1

Page 10: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

10

The effect of lateral diffusion (M&K1)

Page 11: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

11

A serpentine patternIC Resistor (M&K1)

R = NSRS + 0.65NCRS

note: RC = 0.65RS

Page 12: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

12

• The equilibrium carrier concentration ahd the Fermi energy are related as

• The potential f = (Ef-Efi)/q

• If not in equilibrium, a quasi-Fermi level

(imref) is used

Fermi Energy

kT

EE

nn and ,

nn

kTEE fif

i

o

i

ofif expln

Page 13: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

13

Electron quasi-Fermi Energy (n = no + n)

kT

EE

nnn

:is density carrier the and

, n

nnkTEE

:defined is (Imref) level Fermi-Quasi The

fifn

i

o

i

ofifn

exp

ln

Page 14: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

14

Hole quasi-Fermi Energy (p = po + p)

kT

EE

npp

:is density carrier the and

, n

ppkTEE

:as defined is Imref the holes, For

fpfi

i

o

i

ofpfi

exp

ln

Page 15: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

15

Ex-field when Ef - Efi not constant• Since f = (Ef - Efi)/q = Vt ln(no/ni)

• When Ef - Efi = is position dependent,

• Ex = -df/dx = -[d(Ef-Efi)/dx]= - Vt d[ln(no/ni)]/dx

• If non-equilibrium fn = (Efn-Efi)/q = Vt ln(n/ni), etc

• Exn = -[dfn/dx] = -Vt d[ln(n/ni)]/dx

Page 16: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

16

Si and Al and model (approx. to scale)

qfm,Al ~ 4.1 eV

Eo

EF

mEFp

EFn

Eo

Ec

Ev

EFi

qfs,n

qcsi~

4.05 eV

Eo

Ec

Ev

EFi

qfs,p

metal n-type s/c p-type s/c

qcsi~

4.05 eV

Page 17: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

17

Making contact be-tween metal & s/c• Equate the EF in

the metal and s/c materials far from the junction

• Eo(the free level), must be continuous across the jctn.

N.B.: qc = 4.05 eV (Si),

and qf = qc + Ec - EF

Eo

EcEF EFi

Ev

qc (electron affinity)

qfF

qf(work function)

Page 18: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

18

Equilibrium Boundary Conditions w/ contact• No discontinuity in the free level, Eo

at the metal/semiconductor interface.• EF,metal = EF,semiconductor to bring the

electron populations in the metal and semiconductor to thermal equilibrium.

• Eo - EC = qcsemiconductor in all of the s/c.

• Eo - EF,metal = qfmetal throughout metal.

Page 19: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

19

Ideal metal to n-typebarrier diode (fm>fs,Va=0)

EFn

Eo

Ec

Ev

EFi

qfs,n

qcs

n-type s/c

qfm

EF

m

metal

qfBn

qfi

qf’n

No disc in Eo

Ex=0 in metal ==> Eoflat

fBn=fm- cs = elec mtl to s/c barr

fi=fBn-fn= fm-fs elect s/c to mtl barr

Depl reg

Page 20: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

20

Metal to n-typenon-rect cont (fm<fs)

EFn

Eo

Ec

Ev

EFi

qfs,n

qcs

n-type s/c

qfm

EF

m

metal

qfB,n

qfn

No disc in Eo

Ex=0 in metal ==> Eo flat

fB,n=fm - cs

= elec mtl to s/c barr

fi= fBn-fn< 0

Accumulation region

Acc reg

qfi

Page 21: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

21

Ideal metal to p-typebarrier diode (fm<fs)

No disc in Eo

Ex=0 in metal ==> Eoflat

fBn= fm- cs = elec mtl to s/c barr.

fBp= fm- (cs + Eg)= hole m to s barr.

fi = fm-fs,p = hole s/c to mtl barr.

EFp

Eo

Ec

Ev

EFi

qfs,pqcs

p-type s/c

qfm

EF

m

metal

qfBn

qfi

qfp<0Depl reg

qfBpqfi

Page 22: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

22

Metal to p-typenon-rect cont (fm>fs)

No disc in Eo

Ex=0 in metal ==> Eo flat

fB,n = fm - cs = elec mtl to s/c barr

fBp= fm- (cs + Eg) = hole m to s

fi = fm-fs,n = s/c to mtl barr.

EFi

Eo

Ec

Ev

EfP

qfs,n

qcs

n-type s/c

qfm

EF

m

metal

qfBn

q(fi)

qfpAccum reg

qfBp qfi

Page 23: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

23

Metal/semiconductorsystem types

n-type semiconductor• Schottky diode - blocking for fm >

fs

• contact - conducting for fm < fs

p-type semiconductor• contact - conducting for fm > fs

• Schottky diode - blocking for fm < fs

Page 24: EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu .

©rlc L08-15Feb2011

24

References1 and M&KDevice Electronics for Integrated

Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986. See Semiconductor Device Fundamentals, by Pierret, Addison-Wesley, 1996, for another treatment of the m model.

2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

3 and **Semiconductor Physics & Devices, 2nd ed., by Neamen, Irwin, Chicago, 1997.

Fundamentals of Semiconductor Theory and Device Physics, by Shyh Wang, Prentice Hall, 1989.