Chap06_Normal Distributions & Continous

download Chap06_Normal Distributions & Continous

of 82

  • date post

    23-Nov-2015
  • Category

    Documents

  • view

    7
  • download

    1

Embed Size (px)

Transcript of Chap06_Normal Distributions & Continous

  • Chapter 6

    The Normal Distribution and Other Continuous DistributionsStatistics for ManagersUsing Microsoft Excel 4th Edition

  • Chapter GoalsAfter completing this chapter, you should be able to: Describe the characteristics of the normal distributionTranslate normal distribution problems into standardized normal distribution problemsFind probabilities using a normal distribution tableEvaluate the normality assumptionRecognize when to apply the uniform and exponential distributions

  • Chapter GoalsAfter completing this chapter, you should be able to: Define the concept of a sampling distributionDetermine the mean and standard deviation for the sampling distribution of the sample mean, XDetermine the mean and standard deviation for the sampling distribution of the sample proportion, psDescribe the Central Limit Theorem and its importanceApply sampling distributions for both X and ps__(continued)

  • Probability DistributionsContinuous Probability DistributionsBinomialHypergeometricPoissonProbability DistributionsDiscrete Probability DistributionsNormalUniformExponentialCh. 5Ch. 6

  • Continuous Probability DistributionsA continuous random variable is a variable that can assume any value on a continuum (can assume an uncountable number of values)thickness of an itemtime required to complete a tasktemperature of a solutionheight, in inches

    These can potentially take on any value, depending only on the ability to measure accurately.

  • The Normal DistributionProbability DistributionsNormalUniformExponentialContinuous Probability Distributions

  • The Normal Distribution Bell Shaped Symmetrical Mean, Median and Mode are EqualLocation is determined by the mean, Spread is determined by the standard deviation,

    The random variable has an infinite theoretical range: + to Mean = Median = ModeXf(X)

  • By varying the parameters and , we obtain different normal distributionsMany Normal Distributions

    Chart3

    00

    0.002215924200.0000014867

    0.002571320500.000002439

    0.00297626620.00000000010.0000039613

    0.00343638330.00000000010.0000063698

    0.00395772580.00000000040.0000101409

    0.00454678130.00000000090.0000159837

    0.00521046740.00000000220.0000249425

    0.00595612180.00000000530.0000385352

    0.00679148460.00000001230.0000589431

    0.00772467360.00000002820.0000892617

    0.00876415020.00000006350.0001338302

    0.00991867720.00000013990.0001986555

    0.01119726510.00000030210.0002919469

    0.012609110.00000063960.0004247803

    0.01416351890.00000132730.0006119019

    0.01586982590.00000269960.0008726827

    0.01773729640.00000538230.0012322192

    0.01977502080.00001051830.0017225689

    0.0219917980.00002014830.0023840882

    0.02439600930.00003783070.0032668191

    0.02699548330.00006962490.0044318484

    0.0297973530.00012560260.0059525324

    0.03280790740.0002220990.0079154516

    0.03603243720.00038495410.0104209348

    0.03947507920.00065401160.0135829692

    0.04313865940.00108912050.0175283005

    0.04702453870.00177779050.0223945303

    0.05113246230.00284445680.0283270377

    0.05546041730.00446099980.0354745928

    0.06000450030.00685771090.043983596

    0.06475879780.01033332890.0539909665

    0.06971528320.01526214050.0656158148

    0.07486373280.02209554660.0789501583

    0.08019166370.03135509790.0940490774

    0.0856842960.04361397650.1109208347

    0.09132454270.05946443790.1295175957

    0.09709302750.07946997240.1497274656

    0.10296813440.10410292120.171368592

    0.10892608850.13367090270.194186055

    0.11494107030.16823833270.217852177

    0.12098536230.20755210430.2419707245

    0.12702952820.25098249750.2660852499

    0.13304262490.29749100760.2896915528

    0.13899244310.34563551340.3122539334

    0.14484577640.39361984480.3332246029

    0.15056871610.43938954890.3520653268

    0.15612696670.48076912580.3682701403

    0.16148617980.51562922930.3813878155

    0.16661230140.54206653460.391042694

    0.17147192750.55857536080.3969525475

    0.17603266340.56418958350.3989422804

    0.18026348120.55857624590.3969525475

    0.18413507020.54206825250.391042694

    0.18762017350.51563168030.3813878155

    0.19069390770.4807721730.3682701403

    0.19333405840.439393030.3520653268

    0.1955213470.3936235870.3332246029

    0.19723966550.3456393470.3122539334

    0.19847627370.29749477870.2896915528

    0.1992219570.25098607670.2660852499

    0.19947114020.20755539310.2419707245

    0.1992219570.16824126510.217852177

    0.19847627370.13367344430.194186055

    0.19723966550.10410506560.171368592

    0.1955213470.07947173530.1497274656

    0.19333405840.05946585130.1295175957

    0.19069390770.04361508220.1109208347

    0.18762017350.03135594260.0940490774

    0.18413507020.02209617680.0789501583

    0.18026348120.01526260.0656158148

    0.17603266340.01033365640.0539909665

    0.17147192750.00685793910.043983596

    0.16661230140.00446115530.0354745928

    0.16148617980.00284456050.0283270377

    0.15612696670.00177785810.0223945303

    0.15056871610.00108916370.0175283005

    0.14484577640.00065403850.0135829692

    0.13899244310.00038497060.0104209348

    0.13304262490.00022210890.0079154516

    0.12702952820.00012560830.0059525324

    0.12098536230.00006962820.0044318484

    0.11494107030.00003783260.0032668191

    0.10892608850.00002014930.0023840882

    0.10296813440.00001051890.0017225689

    0.09709302750.00000538260.0012322192

    0.09132454270.00000269980.0008726827

    0.0856842960.00000132730.0006119019

    0.08019166370.00000063970.0004247803

    0.07486373280.00000030220.0002919469

    0.06971528320.00000013990.0001986555

    0.06475879780.00000006350.0001338302

    0.06000450030.00000002820.0000892617

    0.05546041730.00000001230.0000589431

    0.05113246230.00000000530.0000385352

    0.04702453870.00000000220.0000249425

    0.04313865940.00000000090.0000159837

    0.03947507920.00000000040.0000101409

    0.03603243720.00000000010.0000063698

    0.03280790740.00000000010.0000039613

    0.02979735300.000002439

    0.026995483300.0000014867

    0.024396009300.0000008972

    Sheet1

    xpopulationsampling populationsigman

    -50.002215924200.0000014867281

    -4.90.002571320500.0000024390.70710678121

    -4.80.00297626620.00000000010.000003961312

    -4.70.00343638330.00000000010.0000063698

    -4.60.00395772580.00000000040.0000101409

    -4.50.00454678130.00000000090.0000159837

    -4.40.00521046740.00000000220.0000249425

    -4.30.00595612180.00000000530.0000385352

    -4.20.00679148460.00000001230.0000589431

    -4.10.00772467360.00000002820.0000892617

    -40.00876415020.00000006350.0001338302

    -3.90.00991867720.00000013990.0001986555

    -3.80.01119726510.00000030210.0002919469

    -3.70.012609110.00000063960.0004247803

    -3.60.01416351890.00000132730.0006119019

    -3.50.01586982590.00000269960.0008726827

    -3.40.01773729640.00000538230.0012322192

    -3.30.01977502080.00001051830.0017225689

    -3.20.0219917980.00002014830.0023840882

    -3.10.02439600930.00003783070.0032668191

    -30.02699548330.00006962490.0044318484

    -2.90.0297973530.00012560260.0059525324

    -2.80.03280790740.0002220990.0079154516

    -2.70.03603243720.00038495410.0104209348

    -2.60.03947507920.00065401160.0135829692

    -2.50.04313865940.00108912050.0175283005

    -2.40.04702453870.00177779050.0223945303

    -2.30.05113246230.00284445680.0283270377

    -2.20.05546041730.00446099980.0354745928

    -2.10.06000450030.00685771090.043983596

    -20.06475879780.01033332890.0539909665

    -1.90.06971528320.01526214050.0656158148

    -1.80.07486373280.02209554660.0789501583

    -1.70.08019166370.03135509790.0940490774

    -1.60.0856842960.04361397650.1109208347

    -1.50.09132454270.05946443790.1295175957

    -1.40.09709302750.07946997240.1497274656

    -1.30.10296813440.10410292120.171368592

    -1.20.10892608850.13367090270.194186055

    -1.10.11494107030.16823833270.217852177

    -10.12098536230.20755210430.2419707245

    -0.90.12702952820.25098249750.2660852499

    -0.80.13304262490.29749100760.2896915528

    -0.70.13899244310.34563551340.3122539334

    -0.60.14484577640.39361984480.3332246029

    -0.50.15056871610.43938954890.3520653268

    -0.40.15612696670.48076912580.3682701403

    -0.30.16148617980.51562922930.3813878155

    -0.20.16661230140.54206653460.391042694

    -0.10.17147192750.55857536080.3969525475

    00.17603266340.56418958350.3989422804

    0.10.18026348120.55857624590.3969525475

    0.20.18413507020.54206825250.391042694

    0.30.18762017350.51563168030.3813878155

    0.40.19069390770.4807721730.3682701403

    0.50.19333405840.439393030.3520653268

    0.60.1955213470.3936235870.3332246029

    0.70.19723966550.3456393470.3122539334

    0.80.19847627370.29749477870.2896915528

    0.90.1992219570.25098607670.2660852499

    10.19947114020.20755539310.2419707245

    1.10.1992219570.16824126510.217852177

    1.20.19847627370.13367344430.194186055

    1.30.19723966550.10410506560.171368592

    1.40.1955213470.07947173530.1497274656

    1.50.19333405840.05946585130.1295175957

    1.60.19069390770.04361508220.1109208347

    1.70.18762017350.03135594260.0940490774

    1.80.18413507020.02209617680.0789501583

    1.90.18026348120.01526260.0656158148

    20.17603266340.01033365640.0539909665

    2.10.17147192750.00685793910.043983596

    2.20.16661230140.00446115530.0354745928

    2.30.16148617980.00284456050.0283270377

    2.40.15612696670.00177785810.0223945303

    2.50.15056871610.00108916370.0175283005

    2.60.14484577640.00065403850.0135829692

    2.70.13899244310.000384970