Trigo V2010
-
Author
syaoran221 -
Category
Documents
-
view
226 -
download
0
Embed Size (px)
Transcript of Trigo V2010
-
8/2/2019 Trigo V2010
1/30
My
AdditionalMathematicsModules
Form 5Topic:16(Version 2010)
REALISATIONby
NgKL(M.Ed.,B.Sc.Hons.Dip.Ed.,Dip.Edu.Mgt.,Cert.NPQH.)
-
8/2/2019 Trigo V2010
2/30
16.1 POSITIVE & NEGATIVE ANGLES
(a) Positive angles angles measured in theanticlockwise
direction
from the positive x-axis.
(b) Negative angles angles measured in the clockwise directionfrom the positive x-axis.
Exercise 16.1Represent each of the following angles in a unit circle. Then, state
(i) the quadrant in which the angles located,
(ii) the corresponding acute angle.
(a) 150o (b) 315o (c) 225o
(d) 6
(e)
3
2(f)
4
7
16.2 (A) THE SIX TRIGONOMETRIC FUNCTIONS
(i) sin =r
yif r= 1, then sin =y
(ii) cos =r
xif r = 1, then cos =x r y
(iii)tan = xy
=
cos
sin x
(iv)cosec =y
rif r = 1, then cosec =
y
1= sin
1
(v) sec =x
rif r = 1, then sec =
x
1= cos
1
2
-
8/2/2019 Trigo V2010
3/30
(vi)cot =y
x= tan
1=
sin
cos
16.2 (B) COMPLEMENT ANGLES
(i) sin
= cos (90
o
)(ii) cos = sin (90o)
(iii)tan = cot (90o)
(iv)cosec = sec (90o)
(v) sec = cosec (90o)
(vi)cot = tan (90o)
16.2 (C) RELATIONSHIPS BETWEEN ANGLES > 90O
AND ITS ACUTE ANGLES
Quadrant II: Quadrant IV:sin = sin (180o) sin = sin (360o)
cos = cos (180o) cos = cos (360o)
tan = tan (180o) tan = tan (360o)
Quadrant III: Note:sin (180o) = sin If is the corresponding acute
cos (180o) = cos angle in the quadrant, then angle
tan (180o) = tan in Quadrant III is (180 + ).16.2 (D) SPECIAL ANGLES: ( 0O, 30O, 45O, 60O, 90O, 180O, 270O, 360O)
0O 30O 45O 60O 90O 180O 270O 360O
sin 02
11 0 1 0
3
90o
S
CT
A
Quadra
ntIII
Tange
nt
positive
(1
80o)
Quadran
tI
All
positive
(
)
Quadra
ntIV
Cosine
p
ositive
(360
o)
Quadra
ntII
Sine
positive
(180o
)
-
8/2/2019 Trigo V2010
4/30
cos 12
10 1 0 1
tan 0 1 0 0
Exercise 16.2:1. Given that sin =
5
3, find the value of each of the following
(a) cos (b) cosec
(c) tan (d) cot
2. Given cos = p and 180o
-
8/2/2019 Trigo V2010
5/30
(c) sin 70o (d) cos 35o
4. Convert the following trigonometric expression to their corresponding
trigonometric expression in Quadrant I. Hence, evaluate their values.
(a) sin 120o (b) cos 200o
(b) tan (325o) (d) cot 350o
(d) cosec3
2(e) sec (
4
)
5. Without using calculator, find the value of the following.
(a) sin 330o (b) cos 150o
(c) tan (60o) (d) cot 225o
5
-
8/2/2019 Trigo V2010
6/30
(e) sec (240o) (f) cosec 390o
6. Solve the following trigonometric equation for 0o
-
8/2/2019 Trigo V2010
7/30
(g) sin ( + 30o) = 0.3566 (h) tan (290o) = 0.8300
7. Find all possible values ofx for 0o< x< 360o without using calculator.
(a) tanx = cot 46o (b) cosx = sin (53o)
(c) secx = cosec 35o 22 (d) cosecx = sec 82o 15
8. Find all possible values ofxfor 0o< x< 360o without using calculator.
(a) cos x + 3 sin x cos x = 0 (b) 3 sin x = 4 sin2 x
7
-
8/2/2019 Trigo V2010
8/30
(c) 2 ( sin x cos x ) = 5 cos x (d) 2 tan x = 7 cot x
16.3 GRAPH OF SINE, COSINE AND TANGENT FUNCTIONS
(A)
The Basic Graph of Sine
x (in radian) 02
2
3 2
y = sin x 0 1 0 -1 0
y
1
00
1
x
(B) The Basic Graph of Cosine
x (in degree) 0o 90o 180o 270o 360o
y = cos x 0 1 0 -1 0
y
8
2
2
3 2
-
8/2/2019 Trigo V2010
9/30
1
00
1
x
(B) The Basic Graph of Tangent
x(in degree)
0o 45o 90o 135o 180o 225o 270o 315o 360o
y = tan x 0 1 1 0 1 1 0
y
00
x
1. Complete the table below and sketch the graph of y = sin 2xfor 0< x< 2
y
1
9
Exercise 16.3:
90 180 270 360
90 180 270 360
o
-
8/2/2019 Trigo V2010
10/30
0
1
x
2. Complete the table below and sketch the graph of y = 2 cos 2x
for 0o
< x< 360o
y
2
0
2
x
3. Complete the table below and sketch the graph of y = tan 2xfor 0o < x< 180o
y
0
0
x
4. Complete the table below and sketch the graph of y = 3 sin x
10
45o 90o 135o 180o
o
-
8/2/2019 Trigo V2010
11/30
-
8/2/2019 Trigo V2010
12/30
7. Complete the table below and sketch the graph of y = sin 2x 1for 0o x 180o
y
2
1
0
1
2
x
1. Sketch the graphs of y = 2 cos x for 0 x 2 and y = 2x
on the
same axes. Hence determine the number of solutions forx between 0 and
2 which satisfy the equation 2 cos x =2
x.
x 0 y
y
2
0 x12
Exercise 16.4 : Problem Solvin of Tri onometric Functions
-
8/2/2019 Trigo V2010
13/30
2
Number of solutions =
2. Sketch the graphs of y = tan x for 0 x 2 and y = 1 32x
on the
same axes. Hence determine the number of solutions forx between 0 and2 which satisfy the
equation tan x = 1 32x
x 0
y
y
1
0 x
13
-
8/2/2019 Trigo V2010
14/30
1
Number of solutions =
3. Sketch the graphs of y = 4 sin 2x for 0 x 2 and y = 1 2
3x on
the same axes. Hence determine the number of solutions forx between 0
and 2 which satisfy the equation 4 sin 2x = 1 23x
.
x 0 y
y
4
0 x14
-
8/2/2019 Trigo V2010
15/30
4
Number of solutions =
16.4 BASIC IDENTITIES
The 3 basic identities:
sin2 x + cos2 x = 11 + tan2 x = sec2 x1 + cot2 x = cosec2 x
16.5 ADDITION FORMULAEsin (A + B) = sin A cos B + cos A sin B
sin (A B) = sin A cos B cos A sin Bsin (A B) = sin A cos B cos A sin B
cos (A + B) = cos A cos B sin A sin B cos (A B) = cos A cos B + sin A sin B
cos (A B) = cos A cos B sin A sin B
tan (A + B) =BtanAtan
BtanAtan
+
1
tan (A B) =BtanAtan
BtanAtan
+
1
tan (A B) =BtanAtan
BtanAtan
1
15
-
8/2/2019 Trigo V2010
16/30
16.6 DOUBLE ANGLE FORMULAE
sin 2A = 2 sin A cos A
cos 2A = cos2A sin2A Applying identity cos2 A + sin2 A = 1,
then, cos 2A = 2 cos2 A 1
cos 2A = 1 2 sin2 A
tan 2A =Atan
Atan21
2
Note :Similarly, the formulae can be apply to create
HALF-ANGLE FORMULAE or other Addition Angle.Exercise 16.4:
1. Prove the following identities;
(a) cot x + tan x = cosec x sec x (b) cos4 x sin4x = 1 2 sin2x
(c) 211
tan= cos (d)
secsin
cos
cos
sin2
1
1 =++
16
-
8/2/2019 Trigo V2010
17/30
(e) sec2 + cosec2 = sec2 cosec2
(e) 121
12
2
2
+
xcosxtan
xtan
2. Solve the following trigonometric equations for 0 x 360o;
(a) 6 cos2 x sin x 5 = 0 (b) 3 sin2x 5 cos x 1 = 0
(c) tan2x sec x = 1 (d) 3 cosec x + 9 = cot2 x
17
-
8/2/2019 Trigo V2010
18/30
(e) 3 sin x + 2 = cosec x (f) tan x + 1 = 2 cot x
Exercise 16.5:
1. Without using a calculator, find the value for the following trigonometric
expression.
(a) sin 21o cos 24o + cos 21o sin 24o (b) tan 15o
(c) cos 200o cos 65o sin 200o sin 65o (d) oooo
tantan
tantan
54841
5484
+
(e) 2 cos2 22.5o 1 sin 75o
18
-
8/2/2019 Trigo V2010
19/30
2. Given cos 2A = 4
1
and A is an acute angle. Determine the value of;
(a) cos 4A (b) cos A
(c) sin A tan A
3. Find all the values of x which satisfy the following trigonometric equations
for 0o x 360o
(a) cos 2x 3 sin x + 1 = 0 3 tan x = 2 sin 2x
19
-
8/2/2019 Trigo V2010
20/30
(c) cos 2x + cos2 x = 2 cos x 3 cos 2x + cos x 2 = 0
(e) 5 sin2x = 5 sin 2x (f) tan 2x = 4 cot x
(g) 1 (+ sin x)(3 + sin x) = 2 cos2 x(h)
xsec2
4+ 3 cos x = cos 2x
20
-
8/2/2019 Trigo V2010
21/30
PAST YEAR SPM QUESTIONS
PAPER 1 /2009:
16. Solve the equation 3sin x cos x cos x = 0 for 0o x 360o.[3 marks]
PAPER 1 /2008:
17. Given that sin = p, wherep is a constant and 90o x 180o. Findin terms ofp:
(a) cosec ,
(b) sin 2. [3 marks]
21
-
8/2/2019 Trigo V2010
22/30
PAPER 1 /2007:
18. Solve the equation cot x + 2cos x = 0 for 0o x 360o.[4 marks]
PAPER 1 / 2006:
Solve the equation 15 sin2 x = sin x + 4 sin 30o for 0o x 360o.
[4 marks]
22
-
8/2/2019 Trigo V2010
23/30
PAPER 1 / 2005:
17. Solve the equation 3cos 2x = 8 sin x 5 for 0o x 360o.
[4 marks]
PAPER 1 / 2004:
18. Solve the equation cos2 x sin2x = sin x for 0o x 360o.
[4 marks]
PAPER 1 / 2003:
20. Given that tan = t, 0 < < 90o, express, in terms of t;(a) cot
(b) sin (90 ) [3 marks]
23
-
8/2/2019 Trigo V2010
24/30
-
8/2/2019 Trigo V2010
25/30
PAPER 2 / 2004 / SECTION A:
3. (a) Sketch the graph ofy = cos 2x for 0o x 180o. [3 marks]
(b) Hence, by drawing a suitable straight line on the same axes, find the
number of solutions satisfying the equation 2 sin2 x = 2 180
xfor
0o x 180o.
[3marks]
25
-
8/2/2019 Trigo V2010
26/30
PAPER 2 / 2005 / SECTION A:
5. (a) Prove that cosec2 x 2 sin2 x cot2 x = cos 2x. [2 marks]
(b) (i) Sketch the graph ofy = cos 2x for 0 x 2.
(ii) Hence, using the same axes, draw a suitable straight line
to find the number of solutions to the equation
3(cosec2 x 2 sin2 x cot2 x) =x
1 for 0 x 2.State the number of solutions. [6 marks]
26
-
8/2/2019 Trigo V2010
27/30
PAPER 2 / 2006 / SECTION A:
4. (a) Sketch the graph ofy = 2 cos 2x for 0 x 2. [4 marks]
(b) Hence, using the same axis, sketch a suitable graph to find the number
of solutions to the equationx
+ 2 cos x = 0 for 0 x 2.
State the number of solutions. [3 marks]
27
-
8/2/2019 Trigo V2010
28/30
-
8/2/2019 Trigo V2010
29/30
PAPER 2 / 2008 / SECTION A:
4. (a) Prove that xx
x
2tan2
sec2
tan2=
[2 marks]
(b) (i) Sketch the graph ofy = tan 2x for 0 x .
(ii) Hence, using the same axis, sketch a suitable graph to find the
number of solutions to the equation 0
2sec2
tan23=
+
x
xx
for
0 x .
State the number of solutions. [6 marks]
29
-
8/2/2019 Trigo V2010
30/30
PAPER 2 / 2009 / SECTION A:
4. (a) Sketch the graph ofy =2
3cos 2x for 0 x
2
3. [3 marks]
(b) Hence, using the same axis, sketch a suitable straight line to find the
number of solutions to the equation2
32cos
3
4= xx
for 0 x 2
3.
State the number of solutions. [3 marks]