2 - Conic Sections-V2010

45
8/3/2019 2 - Conic Sections-V2010 http://slidepdf.com/reader/full/2-conic-sections-v2010 1/45 The Conics

Transcript of 2 - Conic Sections-V2010

Page 1: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 1/45

The Conics

Page 2: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 2/45

Conics, an abbreviation for conic sections, are

curves that result from the intersection of a

right circular cone and a plane.

Depending on the angle of the plane relative to

the cone, the intersection can be a parabola, anellipse, a circle, or a hyperbola.

Definition

Page 3: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 3/45

Conics

Conics

Page 4: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 4/45

The general form of a second degree equation in 2

variables x, y is given by

ax2 +bxy + cy2 + dx +ey + f = 0

where a, b, c, d, e, and f are constants and at least one

of a, b, and c is nonzero .

The shapes of the corresponding graphs of the

equation depend on the values of these constants.

General Form

Page 5: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 5/45

Consider the second-degree equation of the form

ax2 +bxy + cy2 + dx +ey + f = 0

where a, b, c, d, e, and f are constants and at least oneof a, b, and c is nonzero .

The graph is

an ellipse if b2 ± 4ac < 0, b 0, a c

a circle if b2 ± 4ac < 0, b = 0, a = c

a parabola if b2 ± 4ac = 0

a hyperbola if b2 ± 4ac > 0

Identification of a Conic

Page 6: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 6/45

Conics

 parabola

b2 ± 4ac = 0

hyperbola

b2 ± 4ac > 0

ellipse

b2 ± 4ac < 0, b 0, a c

circleb2 ± 4ac < 0, b = 0, a = c

Page 7: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 7/45

Identify the conic section.

1.  x2+ y2 + 4x + 12y + 36 = 0

Solution:a = 1 , b = 0, c = 1 , d = 4, e = 12, and f = 36 

b2  ± 4ac = (0)2 ± 4( 1 )( 1 ) = ± 4 < 0

a = c and b = 0

circle

Example

Page 8: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 8/45

Identify the conic section.

2. 2x2 ± 4xy + 8y2 + 7 = 0

Solution:a = 2, b = ± 4, c = 8, d = 0, e = 0, and f = 7 

b2 ± 4ac = (± 4 )2 ± 4(2)(8) = ± 48 < 0

a c and b 0

ellipse

Example

Page 9: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 9/45

Determine the type of conic section that each equation

will produce.

1. x2+ y2 + 4x + 12y + 36 = 0

2. 2x2 ± 4xy + 8y2 + 7 = 03. x2 ± 8x ± 6y ± 8 = 0

4. 3 x2 + 6xy + 5y2 ± x + y = 0

5. 2 x2 + xy ± y2 + x ± y = 0

6. x2+ y2  ± 10x + 4y ± 7 = 07. x2+ y2  ± 10x ± 24y + 25 = 0

8. 2 x2 ± y2 + 4xy ± 2x + 3y ± 6 = 0

9. x2 + 4x +16y + 4 = 0

Example

1. circle

2. ellipse3. parabola

4. ellipse

5. hyperbola

6. circle7. circle

8. hyperbola

9. parabola

Page 10: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 10/45

Parabola

Page 11: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 11/45

Definition of a Parabola

A parabola is the set of all points in a plane

that are equidistant from a fixed line (the

directrix) and a fixed point (the focus) that is

not on the line.

Directrix

Parabola

Vertex

Focus

Axis of 

Symmetry

Page 12: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 12/45

 x 

Directrix  x  = - p

 y 2 = 4 p x 

Vertex

Focus ( p, 0)

 y

 x 

Directrix y = - p

 x  2 = 4 p y

Vertex

Focus ( p, 0) y

Standard Forms of the Parabola

The standard form of the equation of a parabola withvertex at the origin is

 y2 = 4 p x  or   x 2 = 4 p y.

the focus is on the  x -axis,which is the axis of symmetry.

the focus is on the y-axis,

which is the axis of symmetry.

Page 13: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 13/45

Parabolas

Focus

Directrix

Parabola

Page 14: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 14/45

Standard form of the equation

of a parabola with vertex (0,0)

EquationEquation FocusFocus DirectrixDirectrix AxisAxis

xx22=4py=4py (0,p)(0,p) y =y = --pp

yy22=4px=4px (p,0)(p,0) x =x = --pp

Page 15: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 15/45

Find the focus and directrix of each parabola. Then graph

the parabola.

1.  x2 = 16y 2. y2 = ± 12x 3. 2x2 + 5y = 0

Solution:

1.  x2 = 16y

Vertex : (0, 0)

 Focus: x2 = 16y

 x2 = 4(4)y

 p = 4

(0,p) = (0,4)

 Directrix: y = ±4

Example

8

6

4

2

-2

-4

-10 -5 5 10

y = -4

(-8, 4) (8, 4)

focus (0,4)

vertex (0,0)

Page 16: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 16/45

Find the focus and directrix and then graph the parabola.

2. y2 = ± 12x

Solution:

2. y2 = ± 12x

Vertex : (0, 0)

 Focus: y2 = ± 12x

 y2 = 4(±3)x

 p = ±3 (p,0) = (±3 ,0)

 Directrix: x = 3

Example

8

6

4

2

-2

-4

-6

-5 5

directr ix x = 3

(-3, -6)

(-3, 6)

focus (-3, 0) ver tex (0,0)

Page 17: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 17/45

Find the focus and directrix and then graph the parabola.3. 2x2 + 5y = 0

Solution:

3. 2x2

+ 5y = 0 x2 = ± 5/2 y

Vertex : (0, 0)

 Focus: x2 = ±5/2 y

4p = ±5/2 p = (±5/2)( 1 /4)

(0,p) = (0, ±5/8)

 Directrix: y = 5/8

Example

4

2

-2

-4

-6

-8

-10

-12

-10 -5 5 10

directr ix y = 5/8

focus (0, -5/8)

vertex (0, 0)

Page 18: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 18/45

Standard Form of the Parabola with

Vertex at (h, k)

EquationEquation FocusFocus DirectrixDirectrix AxisAxis

(x(x--h)h)22=4p(y=4p(y--k)k) ((h,k+ph,k+p)) y =ky =k--pp

(y(y--k)k)22=4p(x=4p(x--h)h) ((h+p,kh+p,k)) x =hx =h--pp

Page 19: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 19/45

For each of the following, find the vertex, focus, directrix,and axis of symmetry. Then graph the parabola.

1. (x ± 3 )2 = 10 (y + 2) 2. y2 ± 12x +48 = 0

Solution:

1. (x ± 3 )2

= 10 (y + 2)vertex: (h, k) = (3, ±2)

 focus: (h, k + p) = ?

4p = 10

 p = 5/2 (3, ½)

directrix: y = k ± p = ± 9/2

 Axis of symmetry: x = 3

Example

Page 20: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 20/45

1. (x ± 3 )2

= 10 (y + 2)

Example

4

3

2

1

-1

-2

-3

-4

-5

-6

- 6 -4 - 2 2 4 6 8 10

directr ix y = -9/2

focus (3, 1/2)

vertex (3, -2)

Page 21: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 21/45

For each of the following, find the vertex, focus, directrix,and axis of symmetry. Then graph the parabola.

1. (x ± 3 )2 = 10 (y + 2) 2. y2 ± 12x +48 = 0

Solution:

2. y2

 ± 12x +48 = 0 y2 = 12x ± 48

(y ± 0)2 = 12(x ± 4)

vertex: (h, k) = (4, 0)

 focus: (h + p, k) = ? 4p = 12  p = 3 (7, 0)

directrix: x = h ± p = 4 ± 3 = 1

 Axis of symmetry: y = 0

Example

Page 22: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 22/45

2. y2

 ± 12x +48 = 0(y ± 0)2 = 12(x ± 4)

Example8

6

4

2

-2

-4

-6

-8

5 10 15

di rectr ix x = 1

focus (7, 0)

vertex (4, 0)

Page 23: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 23/45

Find an equation of the parabola with vertex

at the origin and focus (-2, 0).

Vertex: (0, 0); Focus: (-2, 0) = ( p, 0)

 x y )2(42!

Example

 px y 42!

 x y 82!

Page 24: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 24/45

Find an equation of the parabola with focus

at ( ± 10, ± 2) and vertex at (3, ± 2).

Vertex: (3, ± 2);

Focus:( ± 10, ± 2)

Example

)(42

h x pk  y !

)3(422

! x p y

3

2

1

-1

-2

-3

-10 -8 -6 -4 -2 2 4

vertex (3, -2)focus (-10, -2)

Page 25: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 25/45

Find an equation of the parabola with focus

at ( ± 10, ± 2) and vertex at (3, ± 2).

Example

)(4

2

h x pk  y !

01524522

! y x y

)3(42

2

! x p ySince focus ( ± 10, ± 2), then F(h + p, k) h + p = ± 10

3 + p = ± 10

 p = ± 13

)3)(13(422

! x y

Page 26: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 26/45

Ellipse

Page 27: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 27/45

Definition of an Ellipse

An ellipse is the set of all points in a plane such that the

sum of the distances of any point on the ellipse to two

other fixed points is a positive constant. These two fixed

 points are called the foci.

Page 28: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 28/45

Definition of an Ellipse

An ellipse is the set of all points in a plane such that the

sum of the distances of any point on the ellipse to two

other fixed points is a positive constant. These two fixed

 points are called the foci.

Page 29: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 29/45

Definition of an Ellipse

The midpoint of the segment connecting the foci is

the center of the ellipse.

The intersection of the ellipse and the line joining

the foci are the vertices of the ellipse.

Page 30: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 30/45

Definition of an Ellipse

The segment between the 2 vertices is called the

major axis of the ellipse.

The segment perpendicular to the major axis and

intercepted by the ellipse is called the minor axisof the ellipse.

Page 31: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 31/45

(0, b)

(0, -b)

(0, a)

(0, -a)

(0, c)

(0, -c)

(0, 0) (a, 0) (0, 0)(-a, 0)

(c, 0)(-c, 0)

(b, 0)(-b, 0)

22221 xyab! 22221 xyba!

Standard Forms of the Equations of an Ellipse

The standard form of the equation of an ellipse with center at the origin, and major and minor axes of lengths 2aand 2b (where a and b are positive, and a2 > b2) is

or 1

2

2

2

2

!b

 y

a

 x1

2

2

2

2

!a

 y

b

 x

Page 32: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 32/45

(0, b)

(0, -b)

(0, a)

(0, -a)

(0, c)

(0, -c)

(0, 0) (a, 0) (0, 0)(-a, 0)

(c, 0)(-c, 0)

(b, 0)(-b, 0)

22221 xyab! 22221 xyba!

Standard Forms of the Equations of an Ellipse

The vertices are on the major axis, a units form thecenter. The foci are on the major axis, c units form thecenter. For both equations, c2 = a2 ± b2.

12

2

2

2

!b y

a x

12

2

2

2

!a

 y

b

 x

Page 33: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 33/45

Find the vertices, foci, endpoints of the minor 

axis, and lengths of the major and minor axes

of each ellipse. Then graph the ellipse.

Example

4001625.)1 22!  y x 225259.)2 22

!  y x

Page 34: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 34/45

Find the vertices, foci, endpoints of the minor axis, and lengths of 

the major and minor axes and then graph.

Example

4001625.)1 22!  y x

The equation is the standard form of an ellipse¶s equationwith a2 = 25 and b2 = 16.

Because the denominator of the y2 term is greater than thedenominator of the x2 term, the major axis is vertical.

1400

16

400

2522

!

 y x

12516

22

! y x

Page 35: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 35/45

Find the vertices, foci, endpoints of the minor axis, and lengths of the major and minor axes and then graph.

Example

1

2516

22

! y x

vertices are (0, -a) and (0, a) the vertices are (0, -5) and (0, 5).

endpoints of the horizontalminor axis are (-b, 0) and

(b, 0)

b2 = 16, b = 4 (-4, 0) and (4,0).

foci located at (0, -c) and (0,c)

c2 = a2 ± b2

a2 =25 and b2 = 16

c2 = a2 ± b2 = 25 ± 16 = 9.

(0, -3) and (0, 3)

Page 36: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 36/45

(0, 5)

(0, -5)

(0, 3)

(0, -3)

(0, 0) (4, 0)(-4, 0)

Example

12516

22

! y x

10)5(22 !!a 8)4(22 !!b

length of the major axis length of the minor axis

Page 37: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 37/45

Find the vertices, foci, endpoints of the minor axis, and lengths of the major and minor axes and then graph.

Example

The equation is the standard form of an ellipse¶s equation witha2 = 25 and b2 = 9.

Because the denominator of the x2 term is greater than thedenominator of the y2 term, the major axis is horizontal.

122525

2259

22

!  y x

1925

22

! y x

225259.)2 22!  y x

Page 38: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 38/45

Find the vertices, foci, endpoints of the minor axis, andlengths of the major and minor axes and then graph.

Example

1

925

22

! y x

vertices are (-a, 0) and (a,0) the vertices are (-5,0) and (5, 0).

endpoints of the verticalminor axis are (0, -b) and

(0, b)

b2 = 9, b = 3 (0, -3) and (0, 3).

foci located at (-c, 0) and(c, 0)

c2 = a2 ± b2,

a2 =25, b2 = 9,

c2 = a2 ± b2 = 25 ± 9 = 16

(4, 0) and (-4, 0).

Page 39: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 39/45

 y

 x

 F 2=(4, 0) F 

1=(-4, 0)

V 2=(5, 0)V 

(0, 3)

(0, -3)

= (-5, 0)

Example

1925

22

! y x

10)5(22 !!a 6)3(22 !!b

length of the major axis length of the minor axis

Page 40: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 40/45

Standard Forms of Equations of Ellipses Centered at (h,k)

Page 41: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 41/45

Find the vertices, foci, endpoints of the minor axis, and

lengths of the major and minor axes of each ellipse. Then

graph the ellipse.

Example

0144722494.)1 22!  x y x y

1169

3

144

1.)2

22

!

 y x

Page 42: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 42/45

Example

0144722494.)122

!  x y x y

4y2 + 9x2  ± 24y ± 72x + 144 = 0

4y2 ± 24y + 9x2 ± 72x = ± 144

4(y2 ± 6y) + 9(x2 ± 8x) = ± 144

4(y2 ± 6y + 9) + 9(x2 ± 8x + 16) = ± 144 + 36 + 144

4(y ± 3)2 + 9(x ± 4)2 = 36  1

9

3

4

422

!

 y x

Page 43: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 43/45

Example

0144722494.)122

!  x y x y

center: (4, 3)

Vertices: (4, 6) and (4, 0)

 Endpoints of the minor axis: (2,3) and (6,3)

 Foci:

1

9

3

4

422

!

 y x

53,4 53,4

Page 44: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 44/45

Example

center: ( 1 , 3)Vertices: ( 1 , 16) and ( 1 , ± 10)

 Endpoints of the minor axis: ( 13,3) and (± 11 ,3)

 Foci: ( 1 , 8) and ( 1 , ± 2)

1

169

3

144

1.)2

22

!

 y x

Page 45: 2 - Conic Sections-V2010

8/3/2019 2 - Conic Sections-V2010

http://slidepdf.com/reader/full/2-conic-sections-v2010 45/45

1. 2x2 ± 4xy + 8y2 + 7 = 0

2. 3 x2 + 6xy + 5y2 ± x + y = 0

3. y2 ± 2xy +2 x2 ± 5x = 0

Example

Find the vertices, foci, endpoints of the minor axis,

and lengths of the major and minor axes of each

ellipse. Then graph the ellipse.