Trigo V2010 2
-
Author
siti-aizatie-ramli -
Category
Documents
-
view
215 -
download
0
Embed Size (px)
Transcript of Trigo V2010 2
-
7/29/2019 Trigo V2010 2
1/18
16.1 POSITIVE & NEGATIVE ANGLES
(a) Positive angles angles measured in the
anticlockwisedirection
from the positive x-axis.
(b) Negative angles angles measured in the clockwise directionfrom the positive x-axis.
Exercise 16.1Represent each of the following angles in a unit circle. Then, state
(i) the quadrant in which the angles located,
(ii) the corresponding acute angle.
(a) 150o (b) 315o (c) 225o
(d) 6
(e)3
2
(f) 4
7
16.2 (A) THE SIX TRIGONOMETRIC FUNCTIONS(i) sin =
r
yif r= 1, then sin =y
(ii) cos =r
xif r = 1, then cos =x r y
(iii) tan =x
y=
cos
sin x
(iv) cosec =y
r if r = 1, then cosec =y
1 = sin1
(v) sec =x
rif r = 1, then sec =
x
1= cos
1
(vi) cot =y
x= tan
1=
sin
cos
16.2 (B) COMPLEMENT ANGLES
(i) sin = cos (90o )
(ii) cos = sin (90o)
(iii) tan = cot (90o)
(iv) cosec = sec (90o)
(v) sec = cosec (90o)
-
7/29/2019 Trigo V2010 2
2/18
(vi) cot = tan (90o)
16.2 (C) RELATIONSHIPS BETWEEN ANGLES > 90O
AND ITS ACUTE ANGLES
Quadrant II: Quadrant IV:sin = sin (180o) sin = sin (360o)
cos = cos (180o) cos = cos (360o)
tan = tan (180o) tan = tan (360o)
Quadrant III: Note:sin ( 180o) = sin If is the corresponding acute
cos ( 180o) = cos angle in the quadrant, then angle
tan ( 180o) = tan in Quadrant III is (180 + ).
16.2 (D) SPECIAL ANGLES: ( 0O, 30O, 45O, 60O, 90O, 180O, 270O, 360O)
0O
30O
45O
60O
90O
180O
270O
360O
sin 02
11 0 1 0
cos 12
10 1 0 1
tan 0 1 0 0
Exercise 16.2:
1. Given that sin =5
3, find the value of each of the following
a) cos
2
QuadrantIII
Tangent
positive(180o)
Quadrant IAll
positive
( )
QuadrantIV
Cosinepositive
(360o)
QuadrantII
Sinepositive
(180o)
-
7/29/2019 Trigo V2010 2
3/18
b) cosec
c) tan
d) cot
2. Given cos
=
p and 180
o