The CMOS RC delay model -...

21
The CMOS RC delay model The CMOS InverterDynamic Properties Lecture 3b 2014

Transcript of The CMOS RC delay model -...

Page 1: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

The CMOS RC delay model

The CMOS Inverter‐ Dynamic PropertiesLecture 3b

2014

Page 2: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Definitions of rise and fall delays

September, 2014 Integrated Circuit Design 2

• fall delay tpdf• rise delay tpdr

Page 3: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Definitions of rise and fall delays

September, 2014 Integrated Circuit Design 3

• fall time tf• rise time tr

Page 4: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Step‐respons model

September, 2014 Integrated Circuit Design 4

VDD

VSS

CL

VIN VOUT

Square wave approximation

ON

OFF

OFF

ON

Page 5: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Step‐respons rise‐delay model

September, 2014 Integrated Circuit Design 5

VOUT

VDDIDSAT,P

Equivalent circuit

Load capacitance is charged through 

p‐MOSFET

1. VIN=LOW

VDDVDD/2

IDS,P

VOUT

IDSAT,P

pMOS current flow

Square wave approximation

CL

, ,

L OUTpdr

DSAT P DSAT P

C VQtI I

VOUT=VDD/2

Page 6: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Step‐respons fall‐delay model

September, 2014 Integrated Circuit Design 6

VOUT

CL

VSS

IDSAT,N

Equivalent circuit

Load capacitance is discharged through 

n‐MOSFET

2. VIN=HIGH

VDDVDD/2

IDS,N

VOUT

nMOS current flow

IDSAT,N

Square wave approximation

, ,

L OUTpdr

DSAT N DSAT N

C VQtI I

VOUT=VDD/2

Page 7: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Electrical inverter model

September, 2014 Integrated Circuit Design 7

VDD

VSS

VIN VOUT

Replace MOSFETs with constant‐current sources IDSAT,N and IDSAT,P, respectively!

IDSAT,N

IDSAT,P

CDN

CDP

Add the drain capacitancesCGP

CGN

Add the gate capacitances

Page 8: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Electrical inverter model

September, 2014 Integrated Circuit Design 8

VDD

VSS

VIN VOUT

IDSAT,N

IDSAT,P

CG=CGP+CGN CD=CDP+CDN

Simplify!

Page 9: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Ramp respons

September, 2014 Integrated Circuit Design 9

VIN

It is obvious that a ramp approximation would give a better model –However, this is too complicated for simple analytical analysis

Spice simulations show – that for about equal input and output edge rates –The ramp respons delay is about 40% longer than the step respons delay!

Page 10: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Ramp‐respons delay

September, 2014 Integrated Circuit Design 10

1 0.7 0.72

L DD L DDpd pd pd L

DSAT DSAT

C V C Vt t t RCI I

Spice simulations show – that for about equal input and output edge rates –The ramp respons delay is about 40% longer than the step respons delay!

DD

DSAT

VRI

Page 11: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Effective resistances of 60 nm MOSFETs

RN,eff=VDD/IDSAT,max

RP,eff=VDD/IDSAT,max

September, 2014 11Integrated Circuit Design

RN,eff=2 km RP,eff=4 km

IDSAT,max =

600 uA/um

VDD=1.2 V

N‐channel device P‐channel device

IDSAT,max =

300 uA/um

VDD=1.2 V

IDS

VDS

IDS

VDSVDD VDD

Page 12: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Replace current sources by resistors

September, 2014 Integrated Circuit Design 12

VIN VOUT

VDD

VSS

Reff,N

Reff,P

CG CD

Page 13: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Output waveform – ramp input

September, 2014 Integrated Circuit Design 13

Page 14: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Discharge trace – ramp input

September, 2014 Integrated Circuit Design 14

Page 15: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Widen PMOS device to make RP,eff=RN,eff

September, 2014 Integrated Circuit Design 15

VIN VOUT

VSS

Reff

CG CD

VIN VOUT

VSS

W=1

W=2

VDD

Inverter electrical twoport model

Reff=2 km, CG=CD=3.6 fF/m

Page 16: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Applying electrical two‐port model

September, 2014 Integrated Circuit Design 16

VIN

FO1‐delay

Reff

VDDCD CG

Driver inverter Loading inverter

Electrical driver model Electrical load model

VOUT

FO1 delay=0.7Reff(CD+CG)

X1 X1R´ CG 

Introduce R´=0.7ReffFO1 delay=R´(CD+CG)

Page 17: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

• Geometry dependence of R and C:

• X1 and X4 inverters have the same RC product!• But 65 nm inverters have different RC product from 45 nm and 130 nm!

September, 2014 Integrated Circuit Design 17

The RC product is width independent!

2´~~

~pd

G

LRt LW

C WL

´ ´D Ld G G

G G

C Ct R C R C p hC C

parasitic delay p=CD/CG

electrical effort h= CL/CG =4

Page 18: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

FO1 delay

September, 2014 Integrated Circuit Design 18

VIN

FO1‐delay

Driver inverter Loading inverter

VOUTX1 X1

R´ CL

65 nm: FO1 delay=10 ps!

´ 1d Gt R C p

5 ps ~2

CG 

electrical effort h= CL/CG =1

FO1 delay 

Page 19: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

FO4 delay

September, 2014 Integrated Circuit Design 19

VIN

FO4‐delay

Driver inverter

Loading inverter

X1R´

´ 4d Gt R C p

X44CG 

VOUT

65 nm: FO4 delay=25 ps!

5 ps ~5 electrical effort h= CL/CG =4

CG 

FO4 delay 

Page 20: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

FO4 delay

September, 2014 Integrated Circuit Design 20

VIN

FO4‐delay

Driver inverter

X1R´

VOUT

65 nm: FO4 delay=25 ps!

X1

X1

X1

X1Loading inverters

electrical effort h= CL/CG =4

CG 

CG 

CG 

CG 

CG FO4 delay 

Page 21: The CMOS RC delay model - Chalmerspingpong.chalmers.se/public/pp/public_courses/course05460/publish… · Step‐respons fall‐delay model September, 2014 Integrated Circuit Design

Conclusion

September, 2014 Integrated Circuit Design 21

• In this lecture we gave a background discussion to the RC delaymodel

• The RC‐delay model is based on an equivalent RC circuit• The two‐port model includes models for load and driver• We separated technology dependent time constant R´CG from 

technology independent relative delay, d=p+h– Introduced parasitic delay p, and electrical effort h

• FO4 delay– Relative: p+4~5– Absolute RC*(p+4)~5RC