Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel...

19
RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily for wideband RF power amplifiers with frequencies up to 500 MHz. This device is unmatched and is suitable for use in high power military applications. Typical DVB--T OFDM Performance: V DD = 50 Vdc, I DQ = 2600 mA, P out = 125 W Avg., f = 225 MHz, Channel Bandwidth = 7.61 MHz, Input Signal PAR = 9.3 dB @ 0.01% Probability on CCDF. Power Gain — 25 dB Drain Efficiency — 28.5% ACPR @ 4 MHz Offset — --61 dBc @ 4 kHz Bandwidth Typical Pulse Performance: V DD = 50 Vdc, I DQ = 2600 mA, P out = 600 W Peak, f = 225 MHz, Pulse Width = 100 sec, Duty Cycle = 20% Power Gain — 25.3 dB Drain Efficiency — 59% Capable of Handling 10:1 VSWR @ 50 Vdc, 225 MHz, 600 W Peak Power, Pulse Width = 100 sec, Duty Cycle = 20% Features Characterized with Series Equivalent Large--Signal Impedance Parameters CW Operation Capability with Adequate Cooling Qualified Up to a Maximum of 50 V DD Operation Integrated ESD Protection Designed for Push--Pull Operation Greater Negative Gate--Source Voltage Range for Improved Class C Operation In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel. Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage V DSS --0.5, +120 Vdc Gate--Source Voltage V GS --6.0, +10 Vdc Storage Temperature Range T stg --65 to +150 C Case Operating Temperature T C 150 C Operating Junction Temperature (1,2) T J 225 C Table 2. Thermal Characteristics Characteristic Symbol Value (2,3) Unit Thermal Resistance, Junction to Case Case Temperature 99C, 125 W CW, 225 MHz, 50 Vdc, I DQ = 2600 mA Case Temperature 64C, 610 W CW, 352.2 MHz, 50 Vdc, I DQ = 150 mA Case Temperature 81C, 610 W CW, 88--108 MHz, 50 Vdc, I DQ = 150 mA R JC 0.20 0.14 0.16 C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf . Select Documentation/Application Notes -- AN1955. Document Number: MMRF1016H Rev. 0, 7/2014 Freescale Semiconductor Technical Data MMRF1016HR5 2--500 MHz, 600 W, 50 V BROADBAND RF POWER MOSFET NI--1230H--4S PART IS PUSH--PULL Figure 1. Pin Connections (Top View) Drain A 3 1 4 2 Drain B Gate A Gate B Note: The backside of the package is the source terminal for the transistors. Freescale Semiconductor, Inc., 2014. All rights reserved.

Transcript of Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel...

Page 1: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

1RF Device DataFreescale Semiconductor, Inc.

RF Power LDMOS TransistorN--Channel Enhancement--Mode Lateral MOSFET

This 600 W RF power LDMOS transistor is designed primarily for widebandRF power amplifiers with frequencies up to 500 MHz. This device is unmatchedand is suitable for use in high power military applications.

Typical DVB--T OFDM Performance: VDD = 50 Vdc, IDQ = 2600 mA,Pout = 125 W Avg., f = 225 MHz, Channel Bandwidth = 7.61 MHz,Input Signal PAR = 9.3 dB @ 0.01% Probability on CCDF.

Power Gain — 25 dBDrain Efficiency — 28.5%ACPR @ 4 MHz Offset — --61 dBc @ 4 kHz Bandwidth

Typical Pulse Performance: VDD = 50 Vdc, IDQ = 2600 mA,Pout = 600 W Peak, f = 225 MHz, Pulse Width = 100 sec, DutyCycle = 20%

Power Gain — 25.3 dBDrain Efficiency — 59%

Capable of Handling 10:1 VSWR @ 50 Vdc, 225 MHz, 600 W Peak Power,Pulse Width = 100 sec, Duty Cycle = 20%

Features

Characterized with Series Equivalent Large--Signal Impedance Parameters

CW Operation Capability with Adequate Cooling

Qualified Up to a Maximum of 50 VDD Operation Integrated ESD Protection Designed for Push--Pull Operation Greater Negative Gate--Source Voltage Range for Improved Class C

Operation In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel.

Table 1. Maximum Ratings

Rating Symbol Value Unit

Drain--Source Voltage VDSS --0.5, +120 Vdc

Gate--Source Voltage VGS --6.0, +10 Vdc

Storage Temperature Range Tstg -- 65 to +150 C

Case Operating Temperature TC 150 C

Operating Junction Temperature (1,2) TJ 225 C

Table 2. Thermal Characteristics

Characteristic Symbol Value (2,3) Unit

Thermal Resistance, Junction to CaseCase Temperature 99C, 125 W CW, 225 MHz, 50 Vdc, IDQ = 2600 mACase Temperature 64C, 610 W CW, 352.2 MHz, 50 Vdc, IDQ = 150 mACase Temperature 81C, 610 W CW, 88--108 MHz, 50 Vdc, IDQ = 150 mA

RJC0.200.140.16

C/W

1. Continuous use at maximum temperature will affect MTTF.2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF

calculators by product.3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.

Select Documentation/Application Notes -- AN1955.

Document Number: MMRF1016HRev. 0, 7/2014

Freescale SemiconductorTechnical Data

MMRF1016HR5

2--500 MHz, 600 W, 50 VBROADBAND

RF POWER MOSFET

NI--1230H--4S

PART IS PUSH--PULL

Figure 1. Pin Connections

(Top View)

Drain A3 1

4 2 Drain B

Gate A

Gate B

Note: The backside of the package is thesource terminal for the transistors.

Freescale Semiconductor, Inc., 2014. All rights reserved.

Page 2: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

2RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

Table 3. ESD Protection Characteristics

Test Methodology Class

Human Body Model (per JESD22--A114) 2

Machine Model (per EIA/JESD22--A115) A

Charge Device Model (per JESD22--C101) IV

Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Off Characteristics (1)

Gate--Source Leakage Current(VGS = 5 Vdc, VDS = 0 Vdc)

IGSS — — 10 Adc

Drain--Source Breakdown Voltage(ID = 150 mA, VGS = 0 Vdc)

V(BR)DSS 120 — — Vdc

Zero Gate Voltage Drain Leakage Current(VDS = 50 Vdc, VGS = 0 Vdc)

IDSS — — 50 Adc

Zero Gate Voltage Drain Leakage Current(VDS = 100 Vdc, VGS = 0 Vdc)

IDSS — — 2.5 mA

On Characteristics

Gate Threshold Voltage (1)

(VDS = 10 Vdc, ID = 800 Adc)VGS(th) 1 1.65 3 Vdc

Gate Quiescent Voltage (2)

(VDD = 50 Vdc, ID = 2600 mAdc, Measured in Functional Test)VGS(Q) 1.5 2.7 3.5 Vdc

Drain--Source On--Voltage (1)

(VGS = 10 Vdc, ID = 2 Adc)VDS(on) — 0.25 — Vdc

Dynamic Characteristics (1)

Reverse Transfer Capacitance(VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)

Crss — 1.7 — pF

Output Capacitance(VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)

Coss — 101 — pF

Input Capacitance(VDS = 50 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz)

Ciss — 287 — pF

Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg., f = 225 MHz, DVB--TOFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ 4 MHz Offset.

Power Gain Gps 24 25 27 dB

Drain Efficiency D 27 28.5 — %

Adjacent Channel Power Ratio ACPR — --61 --59 dBc

Input Return Loss IRL — --18 --9 dB

Typical Performance — 352.2 MHz (In Freescale 352.2 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW

Power Gain Gps — 22 — dB

Drain Efficiency D — 68 — %

Input Return Loss IRL — --15 — dB

Typical Performance — 88--108 MHz (In Freescale 88--108 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA,Pout = 600 W CW

Power Gain Gps — 24.5 — dB

Drain Efficiency D — 74 — %

Input Return Loss IRL — --5 — dB

1. Each side of device measured separately.2. Measurement made with device in push--pull configuration.

Page 3: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

3RF Device DataFreescale Semiconductor, Inc.

Figure 2. MMRF1016HR5 Test Circuit Schematic

Z13, Z14 0.224 x 0.253 MicrostripZ15*, Z16* 0.095 x 0.253 MicrostripZ17, Z18 0.052 x 0.253 MicrostripZ19 0.053 x 0.080 MicrostripZ20 1.062 x 0.080 MicrostripPCB Arlon CuClad 250GX--0300--55--22, 0.030, r = 2.55

* Line length includes microstrip bends

Z1 1.049 x 0.080 MicrostripZ2* 0.143 x 0.080 MicrostripZ3* 0.188 x 0.080 MicrostripZ4 0.192 x 0.133 MicrostripZ5, Z6 0.418 x 0.193 MicrostripZ7, Z8 0.217 x 0.518 MicrostripZ9, Z10 0.200 x 0.518 MicrostripZ11, Z12 0.375 x 0.214 Microstrip

VBIAS

C15

+

VSUPPLY

+

C16 C14

+

B1

C13 C12 C11 C9 C8 C7 C10

L3

C6

Z1

RFINPUT

Z2

C2

Z3

Z5 Z7

Z6 Z8

Z9 Z11

Z10 Z12

Z13

Z14

C3

Z15

Z16

C4

Z17

Z18

RFOUTPUT

Z20

C5

Z19

+

C25

+

C24

+

C23C20 C21 C22C19 C18

L4

R1

T1 T2

DUTJ1 J2

L2

C1

L1 Z4

C17

Table 5. MMRF1016HR5 Test Circuit Component Designations and ValuesPart Description Part Number Manufacturer

B1 95 , 100 MHz Long Ferrite Bead 2743021447 Fair--Rite

C1 47 pF Chip Capacitor ATC100B470JT500XT ATC

C2, C4 43 pF Chip Capacitors ATC100B430JT500XT ATC

C3 100 pF Chip Capacitor ATC100B101JT500XT ATC

C5 10 pF Chip Capacitor ATC100B7R5CT500XT ATC

C6, C9 2.2 F, 50 V Chip Capacitors C1825C225J5RAC Kemet

C7, C13, C20 10K pF Chip Capacitors ATC200B103KT50XT ATC

C8 220 nF, 50 V Chip Capacitor C1812C224J5RAC Kemet

C10, C17, C18 1000 pF Chip Capacitors ATC100B102JT50XT ATC

C11, C22 0.1 F, 50 V Chip Capacitors CDR33BX104AKYS Kemet

C12, C21 20K pF Chip Capacitors ATC200B203KT50XT ATC

C14 10 F, 35 V Tantalum Capacitor T491D106K035AT Kemet

C15 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet

C16 47 F, 50 V Electrolytic Capacitor 476KXM050M Illinois Cap

C19 2.2 F, Chip Capacitor 2225X7R225KT3AB ATC

C23, C24, C25 470 F 63V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp

J1, J2 Jumpers from PCB to T1 & T2 Copper Foil

L1 17.5 nH, 6 Turn Inductor B06T CoilCraft

L2 8 Turn, #20 AWG ID = 0.125 Inductor, Hand Wound Copper Wire

L3 82 nH, Inductor 1812SMS--82NJ CoilCraft

L4* 9 Turn, #18 AWG Inductor, Hand Wound Copper Wire

R1 20 , 3 W Axial Leaded Resistor 5093NW20R00J Vishay

T1 Balun TUI--9 Comm Concepts

T2 Balun TUO--4 Comm Concepts

*L4 is wrapped around R1.

Page 4: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

4RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

Figure 3. MMRF1016HR5 Test Circuit Component Layout

----

--

+

CU

TO

UT

AR

EA

C16

* L4 is wrapped around R1.

B1

C13C12C11

C9

C8C7

C14

C15 L3

C6C10

L2

T1

J1

C1 L1 C2

C3 (on side)

J2

T2

C4

C5

C19C17

C18

C20C21C22

L4, R1*

C23

C24 C25

Page 5: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

5RF Device DataFreescale Semiconductor, Inc.

TYPICAL CHARACTERISTICS

D

Gps

VDD = 50 Vdc, IDQ = 2600 mAf = 225 MHzPulse Width = 100 secDuty Cycle = 20%

501

1000

0 2010

VDS, DRAIN--SOURCE VOLTAGE (VOLTS)

Figure 4. Capacitance versus Drain--Source Voltage

C,CAPACITANCE(pF)

30

Ciss

100

10

40

Coss

Crss

Measured with 30 mV(rms)ac @ 1 MHzVGS = 0 Vdc

1

100

1 10

10

VDS, DRAIN--SOURCE VOLTAGE (VOLTS)

Figure 5. DC Safe Operating Area

I D,DRAINCURRENT(AMPS)

100

26.5

100

80

100

25.5

24.5

23.5

70

60

50

40

30

Pout, OUTPUT POWER (WATTS) PEAK

Figure 6. Power Gain and Drain Efficiencyversus Output Power

Gps,POWER

GAIN(dB)

D

,DRAINEFFICIENCY(%)

25

24

22.51000

20

52

64

27

62

Pin, INPUT POWER (dBm)

Figure 7. CW Output Power versus Input Power

60

38

26

58

31 32 33 34 35 36 37

P out,OUTPUTPOWER

(dBm

)

P3dB = 59.7 dBm (938 W)

Actual

Ideal

P2dB = 59.1 dBm (827 W)

21

26

0

25

24

Pout, OUTPUT POWER (WATTS) PEAK

Figure 8. Power Gain versus Output Power

Gps,POWER

GAIN(dB)

100

23

600 700

Figure 9. Power Gain and Drain Efficiencyversus Output Power

Pout, OUTPUT POWER (WATTS) PEAK

Gps,POWER

GAIN(dB)

21

28

10

25

27

26

100 1000

VDD = 50 Vdc, IDQ = 2600 mA, f = 225 MHzPulse Width = 12 sec, Duty Cycle = 1%

VDD = 50 VdcIDQ = 2600 mAf = 225 MHzPulse Width = 100 secDuty Cycle = 20%

56

54

29 3028

P1dB = 53.3 dBm (670 W)

22

200 300 400 500

VDD = 30 V

35 V

40 V

45 V

50 V

D

25_C

TC = --30_C

85_C

Gps

22

24

23

VDD = 50 Vdc, IDQ = 2600 mAf = 225 MHzPulse Width = 100 secDuty Cycle = 20%

TC = 25_C

TJ = 150_CTJ = 175_C

10

80

50

70

60

20

40

30

D

,DRAINEFFICIENCY(%)

23 10

Note: Each side of device measured separately. Note: Each side of device measured separately.

TJ = 200_C

Page 6: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

6RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

TYPICAL CHARACTERISTICS — TWO--TONE

Figure 10. Intermodulation DistortionProducts versus Output Power

--70

--20

10

7th Order

Pout, OUTPUT POWER (WATTS) PEP

VDD = 50 Vdc, IDQ = 2600 mA, f1 = 222 MHzf2 = 228 MHz, Two--Tone Measurements

3rd Order

--30

--40

--50

100 700

IMD,INTERMODULATIONDISTORTION(dBc)

--60

5th Order

5

Figure 11. Intermodulation DistortionProducts versus Tone Spacing

10

--10

0.1

7th Order

TWO--TONE SPACING (MHz)

5th Order

3rd Order--30

--40

--50

1 40

IMD,INTERMODULATIONDISTORTION(dBc)

Figure 12. Two--Tone Power Gain versusOutput Power

23.5

26

20

IDQ = 2600 mA

Pout, OUTPUT POWER (WATTS) PEP

25.5

24

100 700

Gps,POWER

GAIN(dB)

25

24.5

2300 mA

VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHzTwo--Tone Measurements, 6 MHz Tone Spacing

Figure 13. Third Order IntermodulationDistortion versus Output Power

Pout, OUTPUT POWER (WATTS) PEP

100

--25

--30

--40

--45

--50

INTERMODULATIONDISTORTION(dBc)

IMD,THIRDORDER

--20VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHzTwo--Tone Measurements, 6 MHz Tone Spacing

70020

--60

--20

VDD = 50 Vdc, Pout = 500 W (PEP), IDQ = 2600 mATwo--Tone Measurements

2000 mA

1800 mA

1300 mA

IDQ = 1300 mA

2600 mA

1800 mA

2300 mA2000 mA

--35

Page 7: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

7RF Device DataFreescale Semiconductor, Inc.

TYPICAL CHARACTERISTICS — OFDM

120.0001

100

0

PEAK--TO--AVERAGE (dB)

Figure 14. Single--Carrier DVB--T OFDM

10

1

0.1

0.01

0.001

2 4 6 8

PROBABILITY

(%)

8K Mode DVB--T OFDM64 QAM Data Carrier Modulation5 Symbols

5

--20

--5

7.61 MHz

f, FREQUENCY (MHz)

Figure 15. 8K Mode DVB--T OFDM Spectrum

--30

--40

--50

--90

--70

--80

--100

--110

--60

--4 --3 --2 --1 0 1 2 3 4

4 kHz BW

(dB)

10

ACPR Measured at 4 MHz Offsetfrom Center Frequency

Figure 16. Single--Carrier DVB--T OFDM PowerGain versus Output Power

25.8

30

IDQ = 2600 mA

Pout, OUTPUT POWER (WATTS) AVG.

25.6

100 200

Gps,POWER

GAIN(dB)

2300 mA

VDD = 50 Vdc, f = 225 MHz8K Mode OFDM, 64 QAM Data CarrierModulation, 5 Symbols

25.4

25.2

25

24.8

24.4

24.2

24.6

2000 mA

1800 mA

1300 mA

ACPR,ADJACENTCHANNEL

POWER

RATIO(dBc)

Figure 17. Single--Carrier DVB--T OFDM ACPRversus Output Power

--68

--56

20

Pout, OUTPUT POWER (WATTS) AVG.

--58

100 200

--60

VDD = 50 Vdc, f = 225 MHz8K Mode OFDM, 64 QAM Data CarrierModulation, 5 Symbols

--62IDQ = 1300 mA

2300 mA2000 mA

1800 mA

2600 mA

--64

--66

ACPR,ADJACENTCHANNEL

POWER

RATIO(dBc)

Figure 18. Single--Carrier DVB--T OFDM ACPR PowerGain and Drain Efficiency versus Output Power

15 --68

Pout, OUTPUT POWER (WATTS) AVG.

45 --56

30

20

--58

30

--62

D,DRAINEFFICIENCY(%),Gps,POWER

GAIN(dB)

40

400

35

25

--60

100

--64

--66

D

25_C TC = --30_C

85_CGps

ACPR

25_C

85_C

--30_C

VDD = 50 Vdc, IDQ = 2600 MHzf = 225 MHz, 8K Mode OFDM64 QAM Data Carrier Modulation5 Symbols

4 kHz BW

8K Mode DVB--T OFDM64 QAM Data Carrier Modulation, 5 Symbols

Page 8: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

8RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

TYPICAL CHARACTERISTICS

250

109

90

TJ, JUNCTION TEMPERATURE (C)

Figure 19. MTTF versus Junction Temperature -- CW

This above graph displays calculated MTTF in hours when the deviceis operated at VDD = 50 Vdc, Pout = 125 W Avg., and D = 28.5%.

MTTF calculator available at http://www.freescale.com/rf. SelectSoftware & Tools/Development Tools/Calculators to access MTTFcalculators by product.

107

106

105

110 130 150 170 190

MTTF(HOURS)

210 230

108

Page 9: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

9RF Device DataFreescale Semiconductor, Inc.

Zo = 10

Zload

Zsource

f = 225 MHz

f = 225 MHz

VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg.

fMHz

Zsource

Zload

225 1.42 + j8.09 4.45 + j1.16

Zsource = Test circuit impedance as measured fromgate to gate, balanced configuration.

Zload = Test circuit impedance as measured fromdrain to drain, balanced configuration.

Figure 20. Series Equivalent Source and Load Impedance

Zsource Z load

InputMatchingNetwork

DeviceUnderTest

OutputMatchingNetwork

--

-- +

+

Page 10: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

10RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

88--108 MHz

Figure 21. MMRF1016HR6 Test Circuit Component Layout — 88--108 MHz

++ +

CU

TO

UT

AR

EA

C18

C1

C3B1

R1C4

L1

C2

T1

L3

L4

COAX2

COAX3

C13

C6

L2

C10

C11C12

C7C8

C9

C5

C14C15

C16 C17

J1

COAX1

Table 6. MMRF1016HR6 Test Circuit Component Designations and Values — 88--108 MHzPart Description Part Number Manufacturer

B1 95 , 100 MHz Long Ferrite Bead 2743021447 Fair--Rite

C1 6.8 F, 50 V Chip Capacitor C4532X7R1H685K TDK

C2 30 pF Chip Capacitor ATC100B300JT500XT ATC

C3, C13, C14 1000 pF Chip Capacitors ATC100B102JT50XT ATC

C4, C5, C6 1 F, 100 V Chip Capacitors GRM31CR72A105KA01L Murata

C7, C8, C9, C10,C11, C12

3900 pF Chip Capacitors ATC700B392JT50X ATC

C15 4.7 F, 100 V Chip Capacitor GRM55ER72A475KA01B Murata

C16, C17 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp

C18 220 F, 100 V Electrolytic Capacitor MCGPR100V227M16X26--RH Multicomp

J1 Jumper with Copper Tape

L1 82 nH Inductor 1812SMS--82NJ CoilCraft

L2 8 Turn, #14 AWG ID=0.250 Inductor, Hand Wound Copper Wire Freescale

L3, L4 8 nH Inductors A03TKLC CoilCraft

R1 15 , 1/4 W Chip Resistor CRCW120615R0FKEA Vishay

T1 Balun Transformer TUI--LF--9 Comm Concepts

Coax1, Coax2 25 , Semi Rigid RF Cable, 3 mm Line, 16 cm Length UT--141C--25 Micro--Coax

Coax3 25 , Semi Rigid RF Cable, 3 mm Line, 15 cm Length UT--141C--25 Micro--Coax

PCB 0.030, r = 2.55 GX0300--55--22 Arlon

Page 11: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

11RF Device DataFreescale Semiconductor, Inc.

TYPICAL CHARACTERISTICS — 88--108 MHz

80020

30

35

85

Pout, OUTPUT POWER (WATTS)

Figure 22. Broadband CW Power Gain and DrainEfficiency versus Output Power — 88--108 MHz

200100

26

25

24

23

22

65

60

55

50

40

DDRAINEFFICIENCY(%)

Gps,POWER

GAIN(dB)

29

75

Gps,POWER

GAIN(dB)

11086

Gps

f, FREQUENCY (MHz)

Figure 23. CW Power Gain and Drain Efficiencyversus Frequency — 88--108 MHz

102989490

27

26

72

82

80

76

74 D,DRAINEFFICIENCY(%)

D

24.5

24

22.5

22

26.5

25.5

25 78

23.5

23

106

VDD = 50 Vdc, IDQ = 150 mA

Gps

D

108 MHz

88 MHz

98 MHz

98 MHz

88 MHz

108 MHz

28

27

21

80

70

45

300 400 500 600 700

81

79

75

73

77

VDD = 50 Vdc, IDQ = 150 mAPout = 600 W, CW

Page 12: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

12RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

Zo = 25

Zload

Zsource

f = 88 MHz

f = 108 MHz

f = 88 MHz

f = 108 MHz

VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W Avg.

fMHz

Zsource

Zload

88 3.20 + j14.50 10.35 + j2.80

98 4.20 + j15.00 9.50 + j3.00

108 4.00 + j15.00 8.90 + j3.50

Zsource = Test circuit impedance as measured fromgate to gate, balanced configuration.

Zload = Test circuit impedance as measured fromdrain to drain, balanced configuration.

Figure 24. Series Equivalent Source and Load Impedance — 88--108 MHz

Zsource Z load

InputMatchingNetwork

DeviceUnderTest

OutputMatchingNetwork

--

-- +

+

Page 13: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

13RF Device DataFreescale Semiconductor, Inc.

Figure 25. MMRF1016HR6 Test Circuit Component Layout — 352.2 MHz

----

----

C11 C9

C7B1

L1

C5

C1

C2

C3*

C4*C24*

L2

C6

C8

C10B2

C12

C20 C22

L3C18

C13C14

C17

C15

C16

L4

C21 C23

C19

COAX1

COAX2

COAX3

COAX4CU

TO

UT

AR

EA

*Mounted on side

Table 7. MMRF1016HR6 Test Circuit Component Designations and Values — 352.2 MHzPart Description Part Number Manufacturer

B1, B2 47 , 100 MHz Short Ferrite Beads 2743019447 Fair--Rite

C1, C2 100 pF Chip Capacitors ATC100B101JT500XT ATC

C3*, C24* 22 pF Chip Capacitors ATC100B221JT300XT ATC

C4* 20 pF Chip Capacitor ATC100B200JT500XT ATC

C5, C6 2.2 F Chip Capacitors C1825C225J5RAC--TU Kemet

C7, C8 220 nF Chip Capacitors C1812C224K5RAC--TU Kemet

C9, C10 0.1 F Chip Capacitors CDR33BX104AKWS AVX

C11, C12 47 F, 50 V Electrolytic Capacitors 476KXM050M Illinois Cap

C13 39 pF, 500 V Chip Capacitor MCM01--009DD390J--F CDE

C14, C15, C16,C17

240 pF Chip Capacitors ATC100B241JT200XT ATC

C18, C19 2.2 F Chip Capacitors G2225X7R225KT3AB ATC

C20, C21, C22,C23

470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp

Coax1, 2, 3, 4 25 , Semi Rigid Coax, 2.2 Shield Length UT141--25 Precision Tube Company

L1, L2 2.5 nH, 1 Turn Inductors A01TKLC Coilcraft

L3, L4 10 Turn, #16 AWG ID=0.160 Inductors, Hand Wound Copper Wire Freescale

*Mounted on side

Page 14: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

14RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

TYPICAL CHARACTERISTICS — 352.2 MHz

D

GpsVDD = 50 VdcIDQ = 150 mAf = 352.2 MHz

23

100

80

100

21

19

17

70

60

50

40

30

Pout, OUTPUT POWER (WATTS) CW

Figure 26. CW Power Gain and Drain Efficiencyversus Output Power

Gps,POWER

GAIN(dB)

D

,DRAINEFFICIENCY(%)

20

18

151000

20

22

16 10

Page 15: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

15RF Device DataFreescale Semiconductor, Inc.

Zo = 10

Zload

Zsourcef = 352.2 MHz

f = 352.2 MHz

VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW

fMHz

Zsource

Zload

352.2 1.10 + j3.80 2.26 + j3.57

Zsource = Test circuit impedance as measured fromgate to gate, balanced configuration.

Zload = Test circuit impedance as measured fromdrain to drain, balanced configuration.

Figure 27. Series Equivalent Source and Load Impedance — 352.2 MHz

Zsource Z load

InputMatchingNetwork

DeviceUnderTest

OutputMatchingNetwork

--

-- +

+

Page 16: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

16RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

PACKAGE DIMENSIONS

Page 17: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

17RF Device DataFreescale Semiconductor, Inc.

Page 18: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

18RF Device Data

Freescale Semiconductor, Inc.

MMRF1016HR5

PRODUCT DOCUMENTATION AND SOFTWARE

Refer to the following resources to aid your design process.

Application Notes

AN1955: Thermal Measurement Methodology of RF Power AmplifiersEngineering Bulletins

EB212: Using Data Sheet Impedances for RF LDMOS DevicesSoftware

Electromigration MTTF Calculator

For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software& Tools tab on the part’s Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision Date Description

0 July 2014 Initial Release of Data Sheet

Page 19: Technical Data Rev. 0, 7/2014 RF Power LDMOS Transistor · RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET This 600 W RF power LDMOS transistor is designed primarily

MMRF1016HR5

19RF Device DataFreescale Semiconductor, Inc.

Information in this document is provided solely to enable system and softwareimplementers to use Freescale products. There are no express or implied copyrightlicenses granted hereunder to design or fabricate any integrated circuits based on theinformation in this document.

Freescale reserves the right to make changes without further notice to any productsherein. Freescale makes no warranty, representation, or guarantee regarding thesuitability of its products for any particular purpose, nor does Freescale assume anyliability arising out of the application or use of any product or circuit, and specificallydisclaims any and all liability, including without limitation consequential or incidentaldamages. “Typical” parameters that may be provided in Freescale data sheets and/orspecifications can and do vary in different applications, and actual performance mayvary over time. All operating parameters, including “typicals,” must be validated foreach customer application by customer’s technical experts. Freescale does not conveyany license under its patent rights nor the rights of others. Freescale sells productspursuant to standard terms and conditions of sale, which can be found at the followingaddress: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of theirrespective owners.E 2014 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:freescale.com

Web Support:freescale.com/support

Document Number: MMRF1016HRev. 0, 7/2014