Kema_Memo 1_Physical Infrastructure and DG Interconnection

download Kema_Memo 1_Physical Infrastructure and DG Interconnection

of 57

Transcript of Kema_Memo 1_Physical Infrastructure and DG Interconnection

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    1/57

    memo

    To: IEPR Committee (Chair Weisenmiller and CommissionerDouglas)

    Date: April 29, 2011

    From: KEMA, Inc. Karin Corfee, David Korinek, WilliamCassel, Christian Hewicker, J org Zillmer, Miguel PereiraMorgado, Holger Ziegler, Nellie Tong, David Hawkins, and

    J orge Cernadas

    Copy: Otto Tang

    Subject: Distributed Generation in Europe PhysicalInfrastructure and Distributed Generation Connection

    KEMA is pleased to submit the attached memo (Memo #1) on distributed generationapplications in Europe. This memo specifically focuses on the physical infrastructure anddistributed generation connection. This memo is the first of three memos that will serve asinterim deliverables for the European Distributed Generation Infrastructure Study. The threememos will eventually be rolled into one consultant report.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    2/57

    i

    TABLE OF CONTENTS

    Introduction...............................................................................................................................................

    1

    SECTION1: PhysicalInfrastructureinGermany.............................................................................. 2RegionalandQuantitativeAllocationofRenewableEnergyinGermany.................................... 2WindEnergy....................................................................................................................................... 4SolarEnergy........................................................................................................................................ 4BiomassinCogenerationPlants...................................................................................................... 4HydroPower...................................................................................................................................... 5

    Network

    Structures

    in

    Germany

    ..........................................................................................................

    5

    GridandVoltageLevels................................................................................................................... 5TransmissionGrid............................................................................................................................. 6

    ConclusionforGridConnectionofDistributedGeneration.......................................................... 10ImplicationsofDGonGridPlanningandOperation................................................................ 10GridDimensioning.......................................................................................................................... 11GridOperation................................................................................................................................. 11

    GeneralandTechnicalRequirementsinGermany......................................................................... 12GeneralRequirements..................................................................................................................... 12TechnicalRequirements.................................................................................................................. 13

    TechnicalOptionstoEnsureSecureGridOperation...................................................................... 15General.............................................................................................................................................. 15MostFrequentApplicationofOptionsinGermany................................................................... 18

    RecentNetworkPlanningPoliciesandStudies............................................................................... 19SECTION2:PhysicalInfrastructureinSpain................................................................................... 21OverallSystemPlanningandDevelopment.................................................................................... 22NetworkStructuresinSpain.............................................................................................................. 22GridandVoltageLevels................................................................................................................. 22TheSpanishTransmissionSystem................................................................................................ 23TheSpanishDistributionSystem.................................................................................................. 26

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    3/57

    ii

    HVDistributionGrid...................................................................................................................... 26MVDistributionGrid...................................................................................................................... 27LVDistributionGrid....................................................................................................................... 30

    RenewableEnergySources(RES)inSpain....................................................................................... 31DistributedGeneration................................................................................................................... 32RegionalandQuantitativeAllocationofRenewableEnergy.................................................... 33

    RESCompensationArrangementsinSpain..................................................................................... 36InterconnectionTechnicalRequirementsinSpain...................................................................... 37

    ImplicationsonPowerGridOperation............................................................................................ 38ConnectionProcesstoTransmissionNetworkinSpain................................................................. 38ConnectionApplicationPhase....................................................................................................... 38

    ConnectionProcesstoDistributionNetworkinSpain................................................................... 40RESInstallations(Nonsolar)......................................................................................................... 40PhotovoltaicInstallations................................................................................................................ 41

    MainReasonsforSuccessofRESinSpain....................................................................................... 42RemainingBarrierstoDevelopmentofDGinSpain...................................................................... 43ImpactofDGonSpainsNetworkInfrastructure........................................................................... 44

    SECTION3: ComparisontoGridInfrastructureinCalifornia..................................................... 46SECTION

    4:

    Summary

    of

    Key

    Lessons

    Learned

    ..............................................................................

    51

    ListofFigures

    Figure1:GenerationMixinGermanyatEndof2009(AllDatainPercentages)............................. 2Figure2:RelationshipbetweenNetworkConnectionLevelandTechnologyforInstallationsEligibleunderthe2008RenewableEnergyAct..................................................................................... 3Figure3:MediumvoltageGridLayouts a)NormallyopenLoops;b)CircuitswithTwoSourceStationsandNormallyopenContactatOneStation............................................................................ 7Figure4:TypicalUrbanLowvoltageGridLayout............................................................................... 9Figure5:TypicalRuralLowvoltageGridLayout.............................................................................. 10Figure6:VoltageIncreaseCausedbyDistributedGeneration......................................................... 14Figure7:SpanishTransmissionSystem................................................................................................ 25Figure8:LoopedHVGrid(SingleSourcePoint)................................................................................ 26

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    4/57

    iii

    Figure9:BridgeConfiguration(HVGridFedfromTwoPoints)..................................................... 27Figure11: UrbanMVGrid:ReflectionPointandSupportCircuitDesign..................................... 28Figure12:UrbanMediumVoltageGrid:DistributionPointdesign................................................ 29Figure

    13:

    Rural

    MV

    Grid

    Structure

    ......................................................................................................

    30

    Figure14:LVGridStructure.................................................................................................................. 31Figure15:BreakdownoftheTotalInstalledCapacitybyTechnologyattheEndof2010............31Figure16:AnnualGrowthofSpainsInstalledPowerGeneration(GW)........................................ 32Figure17:BreakdownoftheTotalRenewableInstalledCapacitybyTechnologyattheEndof2009............................................................................................................................................................ 33Figure18:WindCapacityGeographicDensityinSpain................................................................... 34Figure

    19:

    Installed

    Solar

    Power

    (MW)

    in

    the

    Autonomous

    Communities

    of

    Spain

    by

    End

    2009

    a)PVandb)SolarThermal..................................................................................................................... 35Figure20:DGConnectionProcess........................................................................................................ 40

    ListofTables

    Table1: GeneralRulesforSelectingtheVoltageLevelofthePointofCommonCoupling,accordingtotheRatedPowerofGenerationPlants............................................................................. 3Table2:HydroPowerPlantsinGermany,CategorizedbyNumberandInstalledPower............5Table3:OverviewofVoltageLevelsinGermany................................................................................. 6Table4:MostFrequentlyUsedOptionstoIntegrateDistributedGenerationinGermany..........18Table5:OverviewofVoltageLevelsinSpainperIECDefinitions.................................................. 23Table6:ComparisonofACVoltageLevelsinCaliforniaandEurope............................................ 46

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    5/57

    1

    INTRODUCTION

    AsreflectedintheEnergyCommissionspreviousIntegratedEnergyPolicyReportproceeding,theEnergyCommissionwantstodeterminehowcertainEuropeancountriesintegratelargequantitiesofintermittentrenewableelectricityintotheirelectricdistributionsystemswhilestill

    maintainingsystemcontrolandreliability.ThismemoaddressesthisissuebyprovidingacomparisonbetweentheelectricdistributionsystemsinEuropeandCaliforniawiththeultimategoalofcapturingkeylessonslearnedtofacilitateCaliforniasintermittentrenewabledistributedgeneration(DG)intoitselectricdistributionsystem.

    ThismemodescribesthephysicaldistributioninfrastructureandtherequirementsandprocessesforinterconnectingDGtothedistributioninfrastructureinGermanyandinSpain.ItcomparestherelevantcharacteristicsintheseEuropeancountriestothecorrespondingcharacteristicsinCalifornia.Theanalysisfocusesonmedium andlowvoltagedistributiongridsandoutlinesrelevantaspectsandimpactsofrenewablegenerationathighervoltagelevels.

    Theresearchfocusedonaddressingthefollowingquestions:

    HowaretheelectrictransmissionanddistributionsystemsconfiguredinGermanyandSpain?DoesthistopologyincreaseopportunitiesforrenewableDGintegration?

    HavegridoperatorschangedtheconfigurationoftheirdistributionsystemstoallowforgreaterpenetrationofrenewableDG?Whatarethechangesfromaqualitativesense(whathavetheydone)andaquantitativesense(howmuchofithavetheydone,howaretheytreatingcostallocation,whatisthequantitativerelationshipbetweenchangesininfrastructureandDGpenetration)?

    Do

    grid

    operators

    use

    ancillary

    technologies

    (i.e.,

    battery

    storage,

    flywheel)

    and

    policy

    leversthatallowforgreaterbackflowsonthedistributionsystemwithoutthreateninggridstability(e.g.,protectiondevices,curtailment)?Ordotheysimplyallowgreaterpenetrationundersomecircumstanceswithoutconcern?

    IshigherpenetrationofrenewableDGlikelytocausevoltageissuesandpotentialbackfeedissues?HowdoestheelectricdistributionsystemofGermanyandSpainaddressthebackfeedissueinlightofactivepowerflowfromthemediumvoltagecircuitsuptothetransmission/subtransmissionhighvoltagecircuits?

    Thismemoisorganizedasfollows:

    Section

    1

    reviews

    the

    current

    state

    of

    physical

    infrastructure

    in

    Germany.

    Section2reviewsthecurrentstateofphysicalinfrastructureinSpain.

    Section3providesacomparisontogridinfrastructureinCalifornia.

    Section4providesasummaryofkeylessonslearned.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    6/57

    2

    SECTION 1:Physical Infrastructure in Germany

    Atoftheendof2009about16percentoftheGermanelectricalenergyproductioncamefrom

    renewableenergysources.1ThegrowthofrenewableDGinGermanycontinuesunabated.Germangridoperatorshavedealtwiththechallengeofsignificantrenewableintegrationforthelastfiveto10yearsandhavedevelopedtechnicalrulesandguidelinestoensuresecurenetworkoperation.AnexaminationoftheGermanpowersystemisthereforeusefulforacomparativeanalysis.

    Regional and Quantitative Allocation of Renewable Energy inGermany

    Theextentofdeploymentofeachtypeofrenewablegenerationdependsonmanyfactorssuchaslocalclimateconditions,landutilization,andpopulationlevels.AcomparisonofalltypesofinstalledgenerationcapacityinGermany,includingbothrenewablesandconventionalgenerationisshowninFigure1.

    Figure 1: Generation Mix in Germany at End of 2009 (All Data in Percentages)

    Source: BDEW: German Energy Market, 2010

    1GermanStatisticsofRenewableEnergySources,December2010.

    13

    13

    18

    15

    12

    29

    Generation capacity(total: 153.8 GW net)

    Nuclear Lignite

    Hard coal Natural gas

    Oil, Pump storage hydro, other Renewables

    23

    24

    18

    13

    6

    16

    Net electricity generation(total: 561 TWh net)

    56

    10

    10

    21

    3

    Renewable generation capacity(total: 44.6 GW)

    Wind

    Biomass

    Hydro

    Solar

    others

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    7/57

    3

    Thetypeofrenewableenergysourceoftenaffectsthesizeofthegenerationplantsandtherebythetype(voltagelevel)ofthegridconnection.AsageneralrulefortheGermangrid,thevoltagelevelatthepointofcommoncouplingforDGplantsfollowstheschemashowninTable1.

    Table 1: General Rules for Selecting the Voltage Level of the Point of Common Coupling,according to the Rated Power of Generation Plants

    Rated power of the generation plant Voltage level of grid connection

    Up to 30 kW Low-voltage grid without verification

    30 to 200 kW Low- or medium-voltage grid

    0.15 to 20 MW Medium-voltage grid

    15 to 80 MW High-voltage grid

    80 to 400 MW Extra-high voltage grid

    Source: Potentialermittlung fr den Ausbau der Wasserkraftnutzung in Deutschland, Bundesministerium fr Umwelt, Naturschutzund Reaktorsicherheit (BMU), September 2010 [Capacity of hydro power in Germany, September 2010]

    InactualpracticetherecanbedeviationsfromthegeneralrulebasedontheresultsofspecificstudiesforDGinterconnection.Figure2showsthebreakdownofgenerationtypesinstalledateachvoltagelevelasapercentageofthetotalgenerationcapacityinstalledatthatvoltage.Thesizeofthegeneratorisakeyparameterasitrequiresacorrespondingcapacitybothatthenetworkconnectionpointandfortransportingtheelectricityproducedfromthatpointtothesystem.Forinstance,solarpowerinstallationstendtoberathersmall(mainlyroofbasedinstallations)andaremostlyconnectedtothelowvoltagenetwork.Ontheotherhand,windprojectsaredevelopedoveramuchwiderrangeofsizes(e.g.,windfarms)andthereforeareconnectedatmanydifferentvoltagelevels.

    Figure 2: Relationship between Network Connection Level and Technology for InstallationsEligib le under the 2008 Renewable Energy Act

    2

    Source: Bundesnetzagentur EEG-Statistikbericht 2008 (Translated Regulators EEG Statistical Report, 2008)

    2Installedgeothermalcapacityisnegligible.Gasesreferstowastegasprojects(e.g.,minegas,etc.)

    0% 20% 40% 60% 80% 100%

    Extra high voltage

    Extra high/ high voltage

    High voltage

    High / medium voltage

    Medium voltage

    Medium/ low voltage

    Low voltage

    Hydro

    Biomass

    Gases

    Geothermal

    Wind

    Solar

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    8/57

    4

    AdditionalgeneralobservationsinregardtonetworkintegrationofDGontheGermannetworkareasfollows:

    Wind Energy

    Ahighconcentrationofwindenergyplantsappearsinrural,sparselypopulatedareasinnorthernGermany.Theindividualgeneratingunitsmostlyhavearatedpowerfrom1MWto3MW.Hence,thepointofcommoncouplingismostoftenlocatedonamediumvoltagegrid.However,whenindividualunitsarecollectedintowindfarmswithratedpowerfrom20MWto80MW,theyareusuallyconnectedtothehighvoltagegrid.Afewlargewindfarmsgenerate80to400MWofelectricpowerapieceandaredirectlyconnectedtotheextrahighvoltagegridviaseparatesubstations.

    Solar Energy

    Eventhoughthepercentageofelectricalenergygeneratedbysolarpowerwasonlyabout

    7

    percent

    of

    all

    renewable

    energy

    by

    the

    end

    of

    2009,

    solar

    power

    has

    had

    the

    strongest

    growth

    rateforthelasttwoyears.AsignificantamountofsolarenergygeneratingunitshasbeeninstalledparticularlyinsouthernGermany.Theinstalledsolargenerationcapacityincreasedby3,800MWin2009andbyabout6,500MWin2010,bringingthetotalinstalledsolarcapacitytoapproximately10GW.

    Inurbanareas,smallsolargenerationplants(photovoltaicmodulesandconverters)areinstalledonroofsofresidentialhomes(ratedpower3kWto5kW)orcommercialandpublicbuildings(100kWto1MW).Accordingtogridcode,smallunitsupto5kWpeakcanbeconnectedasasinglephasecustomerataservicepoint.3Unitsupto30kWareallowedtoconnectasathreephasecustomeratanypointontheLVgridwithouttechnicalverification.

    However,thepresenceofmultipleDGprojectswithinanindividualrurallowvoltagegridcancauseseverevoltageorpowerqualityissues(seeMemo#2forfurtherdiscussion).

    Biomass in Cogeneration Plants

    Bytheendof2009,thefractionofrenewableelectricalenergygeneratedfrombiomasswasroughly30percentofallrenewableenergyproduction.Hence,biomassisthenextmostimportantrenewableenergysourceafterwindinGermany,andalsohashighgrowthrates.CogenerationplantsforbiomassareinstalledalloverGermany,particularlyinruralareas.Smallunitswithelectricpowerupto150kWareconnectedtothelowvoltagegrid.Themajorityofunitsrangesfrom500kWto5MWandisconnectedtothemediumvoltagegrid.Largeunitswithconsiderablymorethan5MWexistandareconnectedtothemedium orhighvoltagegrid

    3EigenerzeugungsanlagenamNiederspannungsnetzRichtliniefrdenAnschlussundParallelbetriebvonEigenerzeugungsanlagenamNiederspannungsnetz;VWEWEnergieverlagGmbH;September2005[GermanTechnicalGuidelineGeneratingPlantsConnectedtotheLowVoltageNetwork,September2005]

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    9/57

    5

    accordingtotheirratedpower.Sincebiomassisconsistentlyavailable,itislesscriticalfornetworkoperationthanfluctuatingresourcessuchaswindandsolarpower.

    Hydro Power

    HydropowerresourcesareconsideredtobewelldevelopedinGermany.Therefore,the

    amountof

    hydro

    power

    has

    remained

    nearly

    constant

    over

    the

    last

    few

    decades

    since

    most

    of

    thepotentiallocationsarealreadyutilized.HydropowerstationsofvarioussizeshavebeeninstalledinmountainousareasandalongriversincentralandsouthernGermany.Currently,hydrogenerationisabout25percentofallGermanrenewableenergygeneration.

    Severallargepumpedstoragepowerplantsconnectedtotheextrahighvoltagegridcontributetotheloadbalancingandfrequencycontrolofthetransmissionsystem.Table2providesanoverviewofthenumberofgenerationplantsinseveralpowercategoriesandtheinstalledpower.

    Table 2: Hydro Power Plants in Germany, Categorized by Number and Ins talled Power

    Hydro power unitswith less than 1 MW

    Hydro power unitswith more than 1 MW

    Pumped- storageplants

    Number of units ~6,500 ~400 ~30

    Installed Power ~600 MW ~3,400 MW ~6,600 MW

    Network Structures in Germany

    Inthenextpartofthememo,thebasictechnicallayoutsandconfigurationsofGermantransmissionanddistributiongrids,includingsubstationsandsecondarysubstationsaredescribed.ThenthegeneralandtechnicalrequirementsfortheinterconnectionofDGfroma

    Germanperspectivearethenconsidered.Finally,themostcommonnetworkupgradeoptionstomanagetheintegrationofrenewableenergysourcesandcomplywithtechnicalrequirementsareexamined.

    Grid and Voltage Levels

    TheEuropeanpowergridisathreephasealternatingcurrentgridoperatedatafrequencyof50Hertzatallvoltagelevels.4Fourcommonvoltagegroups(EHV,HV,MV,andLV)havebeenestablishedintheGermanpowergridperInternationalElectrotechnicalCommissiondefinitions.TheexistinggridvoltagesforeachofthesegroupsinGermanyareshowninTable3.

    4Therailwaypowergridisdistinguishedfromthepublicpowergridbyfrequencyandgeneration.ItisatwophaseACgridoperatedat16.7Hz.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    10/57

    6

    Table 3: Overview of Vol tage Levels in Germany

    Name(IEC Definition) Abbreviation Rated Voltage Role

    Extra-high voltage EHV 380 kV, 220 kV Transmission grid

    High voltage HV 110 kV

    Distribution gridMedium voltage MV 30 kV, 20 kV,15 kV, 10 kV

    Low voltage LV 400 V

    Transmission Grid

    TheEuropeantransmissiongridisoperatedprimarilyat380kVandpartiallyat220kV,butthelatterisonthedeclineandprovidesthebasisfortheelectricalenergytransportbetweenlargescalepowerplants,theconnecteddistributiongrids,andneighboringcountries.TheEuropeantransmissiongridisanintegratednetworkdesignedtoensurereliable,efficient,andsecureelectricalenergysupplybasedontherulesoftheOperationHandbookoftheEuropean

    Network

    of

    Transmission

    System

    Operators

    for

    Electricity

    (ENTSO

    E).5

    According

    to

    the

    GermanTransmissionGridCode,6themaintaskofthetransmissiongridoperatorsistoassumeresponsibilityforthewholesystemofelectricalenergysupply,including:

    Thebalanceofloadwithinacontrolarea,especiallyincaseofaresourcecontingency,andtherebymaintainingsystemfrequencystability

    Networksecurity,i.e.,thesecurityofsupply,secureoperation,thecompliancewithvoltageandotheroperationallimitsandthe(n1)criterion

    Theongoingevaluationofsystemoperatingconditionsandinitiationofrequiredcorrectivemeasuresthatwillinvolvetheassociateddistributiongridoperatorsasneeded

    Thetransmissiongridisameshedsystemwithhighstandardsforsystemstability(frequency,voltage,dynamicstability)andsecurityofsupply.ThetransmissioninfrastructureinGermanyispredominatelyoverheadconstruction.

    Distribution Grid at the High Voltage Level

    The110kVhighvoltage(HV)gridservesasthetransportgridformediumdistancesandcarriestheelectricenergyfromexchangepointsonthetransmissiongridtowardsurbanorruralmediumvoltagegrids.Therequirementsconcerningsecurityofsupplyareagaincoveredbycompliancetothe(n1)contingencycriterion.Thegridismeshedandconsistsmainlyofoverheadlines.Inurbanareas,undergroundcablesareofteninstalledat110kV.Highloads

    5UCTEOperationHandbook(OH),version2.5,levelE,dated24.06.2004,UnionfortheCoordinationofTransmissionofElectricity(UCTE);Brussels.

    6TransmissionCode2007,Netz undSystemregelnderdeutschenbertragungsnetzbetreiber,Version1.1,August2007,VerbandderNetzbetreiberVDNe.V.beimVDEW,Berlin[TransmissionCode2007,NetworkandSystemRulesoftheGermanTransmissionSystemOperators,August2007]

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    11/57

    7

    withhighdemands(e.g.,largeindustrialloads)andgeneratingunitsexceedingapowerlimitofabout20MWareprimarilyconnectedtothisgridlevel.

    Distribution Grid on Medium Voltage Level

    Themediumvoltagegrid(MVgrid)mainlycomprisesthevoltagelevels30kV,20kV,15kV,

    and

    10

    kV.

    Urban

    and

    rural

    medium

    voltage

    grids

    significantly

    differ

    in

    their

    characteristics.

    Ahighdensityofloadsandrelativelyhighdemandthatcauseshighutilizationoftheequipment(transformers,cables)istypicalforurbanareas.Appropriatefortheserequirements,urbanmediumvoltagegridsinGermanyconsistlargelyofcableswithatypicalcablecrosssectionof150to300mm(nominallyequivalenttoarangeof300kcmilto636kcmil)andwithacomparablyshortcablelength.TheurbanMVgridsaregenerallyoperatedatvoltagelevelsof10kVand20kV.Theyaresetupasloopednetworkswithopenloopsundernormaloperatingconditions(seeFigure4),wherethesmallercirclesrepresentnormallyopenswitchgearandthelargercirclesrepresentsubstationtransformers.

    a) b)

    Figure 3: Medium-voltage Grid Layoutsa) Normally-open Loops; b) Circuits w ith Two Source Stations and Normally-open Contact at One

    Station

    Source: KEMA

    TheMVgridsareconnectedtothehighvoltagegrid(110kV)viasubstationswithtwoormoreHV/MVtransformersinaratedpowerrangefrom31.5MVAto63MVA.Thepowertransformersaretypicallyequippedwithtapchangersandautomaticvoltagecontrolto

    110 kV

    110 kV

    20 kV20 kV

    20 kV20 kV

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    12/57

    8

    guaranteeafixedvoltageatallmediumvoltagebusbars.Aslinktothelowvoltagegrids,thesecondarysubstationsmainlyconsistofsingleMV/LVtransformersinaratedpowerrangefrom400to1,000kVA.Fordirectcustomerconnections,transformersupto1,600kVAcanbeused.Asaresultofthehighinstalledpowertransformercapacityandtherelativelyshortcableswithlargecrosssections,thenetworkimpedanceiscomparablylowthroughoutthewhole

    urbanmediumvoltagegrid.Hence,voltagedropandpowerqualityissuesrarelyoccur.

    RuralMediumvoltageGridsRuralareasarecharacterizedbylargergeographyandlowloaddensity.Thisresultsinlonglines,highnetworkimpedances,andlowutilizationoftheequipment.InruralmediumvoltagegridsinGermany,undergroundcablesandoverheadlinesareinstalledinnearlyequalshares.Typicalundergroundcablecrosssectionsrangefrom120to240mm(nominallyequivalenttoarangeof4/0AWGto400kcmil).Thecrosssectionsofoverheadlinesrangefrom70to120mm(nominallyequivalenttoarangeof2/0AWGto4/0AWG).

    RuralMVgridsareoperatedatvariousvoltagelevels;mostcommonare10kV,15kV,20kV,

    and30kV.Likeurbanareas,ruralMVgridsaresetupasloopednetworkswithopenloopsundernormaloperatingconditionsorinsomecases,linesareconnectedbetweentwostationswithanormalopencontactatoneend(seeFigure1).Usually,thegridsareconnectedtothehighvoltagegrid(110kV)viasubstationswithtwoHV/MVtransformersinaratedpowerrangefrom16to40MVA.Thepowertransformersaretypicallyequippedwithtapchangersandautomaticvoltagecontroltoguaranteeafixedvoltageatallmediumvoltagebusbars.ThesecondarysubstationsconsistofsingleMV/LVtransformersinaratedpowerrangefrom100to400kVA.

    Inafewcases,intermediate30kVgridsoperatetosupplyremote,lightlyloadedareas.These30kVdistributiongridsformclosedloopsandsupplylowervoltage10kVgrids.

    Duetothelonglines,smallcrosssectionsandthecomparablylowinstalledtransformercapacity,thenetworkimpedanceincreasessignificantlytowardstheremotelineterminal.Voltagedropandpowerqualityissuesfrequentlyoccur(seefurtherdiscussioninMemo#2).

    Low Voltage (LV) Distribution Grid

    Thelowvoltagegrid(LVgrid)isa400Vnetworkandremainsathreephasegrid(orthreephaseplusneutralphase)uptotheservicepoints(endcustomers).Ingeneral,outgoingcableunitsinsecondarysubstationsarefusedbyalowvoltage,highloadbreakingcapacityfuse.Servicepointconnectionsareprotectedforamaximumpermissiblecurrentof63A(equalto25kVA).Similartomediumvoltagegrids,urban,andrurallowvoltagegridshavedifferentgrid

    characteristics.

    UrbanLowvoltageGridsAccordingtothehighspatialdensityofurbanloads,lowvoltagegridsintheseareasconsistofrelativelyshortgridcableswithtypicalcablecrosssectionsof150to240mm(nominallyequivalenttoarangeof300kcmilto400kcmil).Fromthegridcables,servicepointcableswitha

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    13/57

    9

    crosssectionof3550mm(nominallyequivalenttoarangeof#2AWGto#1AWG)branchofftocustomers.

    TheurbanLVgridsareoperatedasmeshedgridsconnectedbymeansofcabledistributionboxes.TheLVgridscanbefedbyasinglesecondarysubstationorbyoneortwoMVcircuits

    (see

    Figure

    4).

    The

    urban

    secondary

    substations

    contain

    about

    10

    outgoing

    cable

    units.

    The

    meshedgridstructureensureshighservicereliability,allowsforhighutilization,andreducesvoltagedropsandpowerqualityissues.Unfortunately,thegridassemblyisunclearandthemaintenanceeffortisrelativelyhigh.

    Figure 4: Typical Urban Low-voltage Grid Layout

    Source: KEMA

    RuralLowvoltageGrids

    Withrespecttotheexpansionofthesupplyzoneandthelowloaddensity,rurallowvoltagegridsinGermanyaremainlyradiallystructuredcableoroverheadlinegrids.Forthegridlines,typicalcablecrosssectionsrangefrom95mmto150mm(nominallyequivalenttoarangeof3/0AWGto300kcmil).Thecrosssectionsofoverheadgridlinesrangefrom50to95mm(nominallyequivalenttoarangeof#1AWGto3/0AWG).Theservicepointconnectionsaretypicallyrealizedthrough35mmcables(nominallyequivalentto#2AWG).Occasionally,overheadlineswithcrosssectionof25to35mm(nominallyequivalenttoarangeof#4AWG

    to

    #2

    AWG)

    are

    used.

    Theruralsecondarysubstationscontainuptoeightoutgoingcableunits.TheruralLVgridsareoperatedasradialgridsfedbyasinglesecondarysubstation(seeFigure5).Thelonglinesanddecreasingcrosssectionstowardsthelineendscausehighnetworkimpedances.Thus,thesensitivitytovoltagedeviationandsystemperturbations(powerqualityissues)significantlyrises.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    14/57

    10

    Figure 5: Typical Rural Low-voltage Grid Layout

    Source: KEMA

    Inadditiontothestandardtaskofsupplyingendusecustomersthedistributionoperators(DSO)mustconnectdistributedgeneratingunitsinthemostcostefficient,technicallysecureway.Therefore,theDSOfirstutilizesanyexistingreservecapacityinthegridforconnectingaDG.Ifthesereservesareexhausted,thepointofcommoncouplingcaneitherbemovedtoahighervoltagelevelgrid(dependingontheDGsize),orthelowervoltagegridmustbeupgradedtoaccommodatethenewDG.Inthecaseofagridextensionorupgrade,thegridplannerconsidersexistinggridexpansionrequirementsandnetworkplanningdirectivesin

    conjunction

    with

    the

    technical

    rules

    for

    the

    grid

    connection

    of

    distributed

    generation

    in

    order

    to

    comeupwiththeoveralllowestcostgridexpansionplan.

    Conclusion for Grid Connection of Distributed Generation

    Implications of DG on Grid Planning and Operation

    Eventhoughtheincreasingproductionofrenewableenergyfromdistributedgeneratingunitsaffectsthegridatallvoltagelevels,nofundamentalchangesinthegridstructureandplanningstandardshavebeenmadeinGermany.However,duetothescaleofdistributedgenerationgrowthinthelastdecade,thelevelofDGoutputonmedium andlowvoltagegridsnowexceedslocalloadinmanyplacesinGermany.Hence,backfeedconditionsoccurinsomeregionsofthenetwork.Ingeneral,backfeedsarepermittedinGermany.Themeteringandprotectionhastobedesignedforbidirectionalflow.Afourquadrantmeterisnecessaryandtheprotectionsystemhastoallowbackfeeds.

    Networkconnectionsandupgradesareplanned,basedontheexpectedlevelofbackfeed,sothatthisconditioncausesnooverloads.Therefore,abackfeedconditionduringnormal

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    15/57

    11

    operationsshouldnotleadtocurtailmentortrippingtheDG.Infact,undertheGermanrules,TSOsmustfirstexhaustallotheravailablemarketoptionsbeforecurtailingrenewableDG.RulesapplyingtoDGcurtailmentbyDNOsarenotasclear,andtheDNOsalsohavefeweroptionsthantheTSOs.However,ifarenewableDGiscurtailedbyeitheraTSOoraDNO,theDGstillreceivesitsnormalfeedintariffremunerationforanycurtailedenergy(i.e.,itdoesnot

    reducetheDGsrevenue).

    SincethecostsofnetworkupgradesinGermanyaresocialized,networkplannersseekthelowestcostplanofupgradetosatisfyDGintegrationneeds.Uptonow,theplanningforDGintegrationhasgenerallybeendoneaspartoftheregulargridexpansionplanningprocesswithnormalexpansionplanningandreplacementneedsconsideredfirst,thenDGintegrationsecond.

    Grid Dimensioning

    Inthepast,medium andlowvoltagegridsweredesignedanddimensionedbasedonthepeakloadscenario.Thegriddimensioningandoperationnowhavetoaccountforthefollowingfour

    scenariosforloadandDGoutput:

    Peakload/lowDGoutput

    PeakDGoutput/lowload

    Peakload/peakDGoutput

    Lowload/lowDGoutput

    Thefirsttwoscenarioshavebecomethemostcriticalcasesforgridplanningandoperation.Thepowerlinesandtransformersofeachvoltagelevelofthegridmustbesizedtomanagetheemergingrenewablepowerproduction.

    Protectionaspects

    TheprotectiondevicesandsettingsinGermandistributiongridsgenerallyallowforbackfeeds.Theoverloadprotectiondependsontheloadinglimitsoftheassetsandisindependentoftheflowdirection.

    Distributedgenerationplantshavetobeequippedwithovervoltageandundervoltageprotection.ThetimedelayoftheprotectiondeviceshastobeadjustedtoallowforthetimedelayoftheautomatictapchangersonHV/MVpowertransformerssupplyingthatpartofthenetwork.Additionally,distributedgenerationplantsinmediumvoltagegridsandabovemustbeequippedwithunderfrequencyandoverfrequencyprotection.Furthermore,apowercircuitbreakerwithintheDGplantmustguaranteethedisconnectionofthedistributedgenerationprojectfromthegridincaseofashortcircuitintheplant.

    Grid Operation

    OperationalissuesduetothehighconcentrationofwindandphotovoltaicgenerationplantsthataremanagedmainlyatthehighvoltageandextrahighvoltagelevelinGermanyinclude:

    Theloadforecastandgenerationschedules,definedinthetraditional15minuteschedulingintervals,getperturbedbyfluctuatingrenewableoutput.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    16/57

    12

    Theconsiderablebackfeedsfromlowload/highDGareasmustbetransportedtolargeloadcentersandcancausecongestioninthetransmissiongrid.

    Thecurtailedutilizationofconventionalpowerplantsreducestheavailablefrequencycontrolandshortcircuitdutyandaffectsthedynamicstabilityofthesystemduetoareductioninrotationalinertiaconnectedtothesystem.

    AccordingtotheGermanlawEnWG,gridoperatorsatallvoltagelevelscaninvokegenerationcurtailmenttocopewithcongestionandothercriticaloperationalsituationsthatjeopardizethenetworksecurity.Forthispurpose,distributedgenerationplantswithratedpowerofmorethan100kWmustbeequippedwithremotecontrolcapabilitytocommunicatetheirrealtimeoutputtothegridoperatorandallowforthegridoperatortosendautomaticpowerdispatchcontrolinstructionstothegenerators.Whilesuchtelecommunicationfacilitiesarenothighvoltagefacilities,theystillareanessentialcomponentoftheinfrastructurerequiredforreliableoperationandcontrolofthehighvoltagegridinGermany.

    General and Technical Requirements in Germany

    General Requirements

    TheimplementationofrenewableenergysourcesisanimportantpoliticaltargetoftheGermangovernment.Inthiscontext,thefederalgovernmenthasdevelopedlegalboundaryconditionsforthedevelopmentofdistributedgeneration.Asaresult,importantnewlaws(EnWG7andEEG8)wereenacted.TheselawsdefineapriorityofrenewableenergysourcesincontrasttoconventionalenergysourcesandobligatetheGermangridoperatortoconnectdistributedgeneration.Thegridoperatorhastoensurethatdistributedgeneratingunitsareabletofeed

    into

    the

    grid

    and

    that

    the

    total

    installed

    power

    can

    be

    transmitted

    under

    normal

    conditions.

    Furthermore,thepointofcommoncouplingshouldbeascloseasreasonabletothelocationoftheindividualdistributedgeneratingunit,giventechnicallimitations.

    Anexceptionisdefinedfordistributedgeneratingunitswithaninstalledpowerlowerthan30kW.Fortheseunitsthepointofcommoncouplingissimplydefinedasthelowvoltagegridclosesttotheserviceconnectionoftheownerofthegeneratingunit.

    7EnWG ZweitesGesetzzurNeuregelungdesEnergiewirtschaftrechtsvom7.Juli2005;BundesgesetzblattJahrgang2005TeilINr.42,ausgegebenzuBonnam12.Juli2005[SecondGermanLawontheEnergyIndustry,July2005]

    8EEGGesetzzurNeuregelungdesRechtsderErneuerbarenEnergienimStrombereichundzurnderungdamitzusammenhngenderVorschriftenvom25.Oktober2008;BundesgesetzblattJahrgang2008TeilINr.49,ausgegebenzuBonnam31.Oktober2008[GermanLawontheRenewableEnergySources,October2008]

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    17/57

    13

    Regardingtheevaluationofthetechnicallyreasonablepointofcommoncoupling,differenttechnicalnormsandrulesweredevelopedinthepast.Theserulesweredevelopedinconsiderationofthefollowingtargets:

    ThepointofcommoncouplingshouldbeclosetothelocationoftherespectiveDG.

    Asecure

    grid

    operation

    must

    be

    maintained

    under

    all

    conditions,

    including

    the

    full

    outputofthedistributedgenerator.

    TheoperationofDGshouldhavenegligibleimpactonothercustomers.

    Specificpowerqualityparametershavetobemaintained.

    Giventhiscontext,distributedgenerationplantsareconnectedatvariousvoltagelevelsdependingonthetypeofenergysourceandtheinstalledpower.Thefollowingsummarydescribesthetechnicalnormsandrulesregardingdistributedgenerationconnectedtomediumvoltageandlowvoltagegrids.

    Technical Requirements

    Toensureasecureoperationofthegridunderallconditionsthefollowingmainpointsshouldbeconsidered:

    Allcomponentsusedintheinterconnectionshouldbeproperlydimensionedforthesizeoftherenewableproject.

    Thevoltagelevelatthepointofconnectionshouldbewithinanacceptablerange.

    Utilization and Overload

    Theutilizationoftheelectricalinterconnectioncomponentsmustnotexceedtheratedcurrentoftheelectricalcomponents.Theratedcurrentsofthecomponentsaredefinedthroughindustrynorms.Inaddition,gridoperatorsinGermanyhavedefinedrelatedrules.Distributedgeneratingunitsthatareconnectedtothemediumvoltageorlowvoltagegridsshouldnotcauseoverloads,undervoltages,orovervoltages.

    Permissible Voltage Range

    Thepermissiblevoltagerangeformedium andlowvoltagegridsisdefinedinthenormDINEN50160.9Ontheonehand,themaximumvoltageshouldnotexceedtheinsulationleveloftheelectricalcomponents.Ontheotherhand,theminimumvoltageateachserviceconnectionpointmustallowanundisturbedoperationofallconnecteddevices.Inthiscontext,thevoltageateachserviceconnectionpointshouldbeinarangeof10percentoftheratedvoltageundernormaloperatingconditions.

    9DINEN50160MerkmalederSpannunginffentlichenElektrizittsversorgungsnetzen;April2008[GermanNorm50160VoltageCharacteristicsofElectricitySuppliedbyPublicDistributionNetworks,April2008]

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    18/57

    14

    Power Quality

    Additionally,distributedgenerationplantsshouldnotinterferewithothercustomers(consumersorgeneratingunits).Toensureacceptablepowerqualityparameters,thefollowingsystemperturbationsassociatedwithaDGshouldbeconsidered:

    Voltage

    increase

    at

    point

    of

    connection

    Flicker

    Harmonics

    Admissiblelimitsforvoltagedeviation,nonsymmetry,flicker,andharmoniclevelsarealsodefined(seeMemo#2).Technicalrulesexistforthegridconnectionofgeneratingunitstothemediumvoltagegrid10andtothelowvoltagegrid11,respectively.

    The Most Critical Issue: Voltage Increase

    Generally,voltageincreaseisthemostcriticalissueatthepointofcommonconnectionfordistributedgeneratingunits.Voltageincreasesarecausedbytheinjectedpowerofgenerating

    units.Thepowertransmissionoverthenetworkimpedancecausesavoltagedropfromthefeedingtothereceivingend.Themagnitudeofthevoltagedeviationrelatestothesizeoftheimpedance.Asaresult,thevoltagedeviationsinthegridvarydependingontheDGsize.ThiseffectisillustratedinFigure6.

    Figure 6: Voltage Increase Caused by Distributed Generation

    Source: KEMA

    10.ErzeugungsanlagenamMittelspannungsnetzRichtliniefrdenAnschlussundParallelbetriebvonErzeugungsanlagenamMittelspannungsnetz;VWEWEnergieverlagGmbH;Juni2008[GermanTechnicalGuidelineGeneratingPlantsConnectedtotheMediumVoltageNetwork,June2008]

    11.EigenerzeugungsanlagenamNiederspannungsnetzRichtliniefrdenAnschlussundParallelbetriebvonEigenerzeugungsanlagenamNiederspannungsnetz;VWEWEnergieverlagGmbH;September2005[GermanTechnicalGuidelineGeneratingPlantsConnectedtotheLowVoltageNetwork,September2005]

    servicepoint

    load

    G

    distributedgenerationplant

    circuitlinetransformer

    voltage

    lengthpeakload

    peakfeedin

    voltageincrease

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    19/57

    15

    ThemaximumdifferencebetweenreceivedvoltageswithandwithoutDGoperationaredefinedintheGermangridrules(seeMemo2).Alldistributedgeneratingunitsthatareconnectedonacommonsectionofgridhavetobeconsidered.

    Theshortcircuitdutyatapointofcommoncouplingservesasameasureforthenetwork

    impedance.

    High

    short

    circuit

    duty

    reflects

    a

    low

    network

    impedance

    and

    vice

    versa.

    Therefore,

    inareaswithlowshortcircuitpower(i.e.,ruralareas),theoccurringvoltageincreaseishigherthaninareaswithahighershortcircuitpower(i.e.,urbanareas).Ifthevoltageincreaseexceedsthelimitvalue,eithergridupgradesarerequiredtoreducethenetworkimpedance,orthedistributedgeneratingunithastobeconnectedtoanotherpointofcommoncoupling.

    Inaddition,othertypesofsystemperturbations(i.e.,flicker,harmonics,etc.)arealsoevaluatedinregardtotheshortcircuitpoweratthepointofcommoncoupling.AlloftheperformancerulesareconsideredbytherespectiveTSOorDNOduringplanningstudiesforeachDGconnectionandappropriateplanningoptionsareemployed,asdiscussedinthenextsection.

    Technical Options to Ensure Secure Grid Operation

    General

    Becauseofthedistinctelectricalcharacteristicsofeachmedium andlowvoltagegrid,themaximumacceptablelevelofDGcapacitycanbelimitedatanygivenpointinthenetwork.Toensuresecuregridoperationdifferentgridplanningoptionscanbeusedtoincreasetheacceptableamountofconnecteddistributedgenerationinagivenpartofthenetwork.However,Germannetworkplannersconsiderallpossibilitiesinordertodeterminetheminimumlevelofgridinvestment.Generally,whentheconnectionpointisinadequate,the

    technical

    options

    include:

    DirectlyconnectingtheDGintoasubstation

    UpgradingofthenetworkcircuitthermalcapabilitytotheDGlocation

    Upgradingofupstreamtransformercapacity

    Reroutingthecircuittoreducecircuitlength

    Relocationofthenetworkloopnormallyopendisconnectpoint

    Setpointadjustmentofautomaticvoltagecontrolonnetworktransformers

    Usingreactivepowercapabilitiesofdistributedgeneratingunits

    Constructionof

    anew

    substation

    Changestonetworktopology

    Upgradeofthenetworksratedvoltagelevel

    Installationofsupplementalreactivepowercompensationequipment

    Implementationofrotatingandnonrotatingenergystoragesystems

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    20/57

    16

    Thesepossibilitiesaredescribedinmoredetailbelow.

    Direct Connection at a Substation

    Ifthevoltageincreaseexceedsthelimitvalue,otherpointsofcommoncouplingshouldbejustified.Inthiscontext,thedirectconnectionofadistributedgeneratingunittoanetwork

    substation

    is

    one

    of

    the

    most

    commonly

    used

    solutions

    in

    Germany.

    This

    option

    can

    also

    be

    usedifothersystemperturbationfactorsexceedthepermissiblelimits.ItrequiresrelocationoftheplannedDGtoasiteadjacenttothenetworksubstationorconstructionofagentielinefromtheDGsitetothenetworksubstation.

    Upgrade of Conductor Size

    AnupgradeofgridundergroundcableoroverheadlinescanbeusediftheconnectionoftheDGtothenearestgridlineexceedscriticalperformanceparameters.Dependingonthegridload,thisapproachmayallowadditionaldistributedgeneratingunitstobeintegratedintothegrid.InGermany,thissolutionisoftenusedforoldergridlines,andconductorreplacementneededduetotheageofthegridlinecansometimesbecombinedwithintegrationof

    distributedgeneration.Thissolutionisalsousedinordertoraiseshortcircuitdutyatthepointofcommoncoupling.Therefore,thisoptioncanalsobeusedtosolveproblemsregardingcriticalvoltageincreases.However,Germanyavoidsupgradingofthedistributiongridsolelyforintegratingdistributedgenerationmany.DependingontheamountofDGprojectsaddedtoaportionofthegrid,upgradeoflineconductorsmayonlybeashorttermoption.Inallcases,relevantneartermandlongtermgridplanningfactorsshouldbetakenintoaccount.

    Upgrade of Transformer Capacity

    Similartolineupgrades,theupgradeofupstreamtransformercapacityisalsousedinGermanyforsomeDGinterconnections.Thisoptionmaybepreferable,especiallyforoldertransformersandallowsmorepoweroutputbydistributedgeneration.

    Reduction of the Circuit Length

    Thisoptioncanberealizedbyreplacinggridline(s)totheDGsitewithanalternativeroutethatcreatesashortercircuitlengthandlowernetworkimpedance.However,thefeasibilityofthisoptiondependsonthegeographyofthespecificgridarea.Moreover,theresultantbenefitsinmanycasesarerelativelylow.

    Relocation of the Network Normally-Open Disconnect Point

    Ashorttermoptiontoreducevoltageincreasesongridlinescanbetherelocationofthenormallyopendisconnectpointofagridloop.12

    In

    Germany

    this

    option

    is

    only

    a

    short

    term

    solution

    and

    is

    used

    more

    from

    the

    grid

    operation

    side.Theimpactoftherelocationofthedisconnectionpointontheabilitytointegratedistributedgenerationiscomparablylowandmayincreasethenetworkelectricallosses.Withrespecttothedynamicgrowthofrenewableenergygeneration,therearesuperioroptionsformediumtermorlongtermgridplanning.

    12Thedisconnectionpointdefinesthenormallyopenpointinanetworkloop(seeFigure1a).

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    21/57

    17

    Adjustment of Automatic Voltage Control Set Point on Transformers

    Anadjustmentofthetransformervoltagecontrolsetpointisalsoconsideredashorttermoption,butinsomecasescanbeusedtokeepthevoltagelevelatadownstreamDGconnectionpointwithinthepermissiblerange.

    ThisoptioncanonlybeusedinmediumvoltagegridsinGermanybecauseonlytheHV/MVpowertransformersareequippedwithautomaticvoltagecontrolsystems(tapchangingunderload).Therefore,applicationislimitedtolargerDGfacilitiesthatneedtoconnecttoMVnetworks.ThisoptionisoccasionallyusedinGermany.

    Using Reactive Power Production Capabilities of Distributed Generation Plants

    Somedistributedgeneratorsareequippedwithautomaticvoltageregulatorsthatcanabsorbreactivepowerfromthegrid(underexcitedoperation)orprovidereactivepowertothegrid(overexcitedoperation)UnderexcitedDGoperationcanbeusedtodecreaseconnectionvoltage,whileoverexcitedoperationcausesvoltageincrease.InGermany,thisoptionisbeing

    usedwithincreasingfrequencyaspartofthelongtermgoalfordistributedgeneratingunitstocontributetothevoltagecontrolofthegrid.Inthepast,numerousDGunitswerenotcapableofproducingreactivepower.Therefore,differenttechnicalruleshavebeendevelopedthatincludetherequirementforDGcapabilitytoprovidereactivepowerandtocontrolvoltage.

    Construction of a New Substation

    AnewsubstationcanbenecessaryifseveralcomponentstransformersandgridlinesreachcriticalutilizationlevelsduetoDGintegration.Theconstructionofanewsubstationimpliesextensivegridextensionmeasures.ItisthemostcostlyoptionandisthereforeavoidedinGermany.However,thisoptionmaybenecessaryinareasexperiencingacomparablyhighlevelofDGinstallationconcentratedinonelocation.ThishasbeenthecaseinthenorthernpartofGermanywheresomeHV/MVsubstationshavebeenconstructedexclusivelyfordistributedgeneration(windfarmconnection).

    Change to the Network Structure

    ChangestoexistingnetworkstructuresarecarriedoutinGermanyonlyifneededaspartofacomprehensivegridexpansionplan.WhiledistributedgenerationaloneisnotconsideredthemainreasonforchangingnetworkstructureinGermany,itisoneofthemanyfactorsconsideredinlongtermgridexpansionplanning.

    Upgrade of the Rated Voltage Level

    TheratedvoltagelevelofmediumvoltagegridsinGermanyhasbeenupgradedinsomeareas.

    Inmostcases,theupgradewasfrom10kVto20kV.Theseupgradesallowforagreaterpenetrationofdistributedgeneration.However,whenthisoptionhasbeenuseditwasselectedduetoitscompatibilitywiththeoverallgridexpansionplanningneeds.DistributedgenerationwasnotbeenusedasthesoledriverforthisoptioninGermany.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    22/57

    18

    Installation of Supplemental Reactive Power Compensation

    Theimplementationofsupplementalreactivepowercompensationsystems(e.g.,shuntreactors,FACTS),ishardlyeverusedformediumvoltageandlowvoltagegridsinGermany.Testsregardingtheimplementationofreactivepowercompensationsystemsarebeingcarriedout.Whethertheinstallationofmorereactivepowercompensationsystemsinmediumvoltage

    andlowvoltagegridswilltakeplaceinGermanyisunclearatthistime.

    Implementation of Rotating and Non-rotating Energy Storage Systems

    Energystoragesystemscanstoreoutputfromfluctuatingrenewableenergysourcesattimeswhentheyexceedtheneedsofthegrid,andthestoredenergyisreleasedbackintothegridatalatertimewhenneeded.However,storagesystemshavenotbeenusedinmediumvoltageandlowvoltagegridsinGermanyforDGintegrationtodatebecausethecostsofsuchtechnologiesarenoteconomicallyjustified.However,pumpedstoragehydroprojectshavebeenusedextensivelyontheEHVgridforregulatingpurposes.

    However,implementationofstoragesystemsforrenewableintegrationonHVandMVgridsis

    consideredtobealongtermpossibilityinGermany.

    Most Frequent Application of Options in Germany

    ThemostfrequentlyusedoptionsaresummarizedinTable4andarecategorizedaccordingtothemostcommonfieldsoftheirapplication.

    Table 4: Most Frequently Used Options to Integrate Distributed Generation in Germany

    Option Grid overloadCritical voltage

    variationPower quality

    issues

    Direct connection

    to a substation

    Upgrade of gridcircuit conductors

    Upgrade of upstreamtransformer capacity

    Reduction of thegrid circuit length

    Relocation of the loop normally-open disconnect point

    Set point adjustment of transformerautomatic voltage control (tap changer)

    Using reactive power capabilitiesof distributed generation plants

    Construction ofa new substation

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    23/57

    19

    Automatic Curtailment Option

    Ingeneral,thegridoperatorsofmedium andlowvoltagegridsinGermanyhavenotusedautomaticcurtailmentofDGasanoptionforexpansionplanning.However,thisoptionhasrecentlybeenunderdiscussion.Inthisscenariothedistributedgenerationplantwouldneedtobecapableofautomaticallyreducingtheiroutputintheeventofspecificovervoltageor

    overloadcondition,evenwithoutaremotecontrolsignalfromthegridoperator.Technicalruleshavenotyetbeenestablishedforthispotentialoption,butitmightbeimplementedinthefutureasanoption.

    Recent Network Planning Policies and Studies

    Eventhoughtheincreasingproductionofrenewableenergyfromdistributedgeneratingunitsaffectsthegridatallvoltagelevels,nofundamentalchangesintheapprovedgridstructureandplanningdirectiveshavebeenmadetodate.Technicalguidelineshavebeendevelopedto

    ensureasecure

    operation

    of

    the

    grid

    under

    all

    conditions

    while

    connecting

    distributed

    generationinaneconomic,leastcostmannerfromtheperspectiveofgridexpansionoptions.Anylargescalegridexpansionandredesignmeasuresinthepasthavebeendrivenprimarilybyoveralllongtermgridplanninggoals,andnotprimarilybydistributedorrenewablegeneration.However,recentpolicyinitiativesandstudiesinGermanysuggestthatanewgridinvestmentparadigmmaybedeveloping.ThisisdueperhapsinparttoconcernsoverthelevelofdependenceonnuclearresourcesinGermanyslongtermenergyplanandthepossibilityofsignificantlyreducingthisdependencethroughintegrationofevenhigherlevelsofrenewables.

    MostrelevanttothecurrentKEMAinvestigation,recentlypublishedGermanstudyreportsconcludethatamajorincreaseinthescopeofdistributedandrenewablegenerationwould

    requireconsiderableexpansionofexistingtransmissionanddistributionnetworks.Accordingtoonemajorwindresourceexpansionstudy13completedin2010,inthebaserenewableexpansionscenariostudiedupto3,600kmofnewtransmissionlinesareneededtoaccommodaterenewablegrowth,particularlylargeoffshorewind,by2020.Thiswouldrequireapproximately1billion/yearinadditionalgridexpansioncostsfornewtransmissionlines.Anotherexpansionscenarioconsideredincreaseduseofhightemperaturetransmissionconductorswhichwouldreducethemileageofnewlinestosome1,700km,butwouldalsorequiresome5,700kmofexistinglinestobemodified.Thisscenariowouldincreasetheexpansioncoststo1.6billion/year,whichisthehighestofallthescenariosanalyzed.

    TheseresultsarecomplementedbyanotherdraftstudybyamajorGermanindustryassociation

    (BDEW)whichquantifiesthenetworkexpansionnecessarytomeetmidtermrenewablepolicygoalsandforecast.14Whilethegovernmentsenergystrategypublishedin2010envisionsatotal

    13DeutscheEnergieAgenturNetworkStudyIIPlanningoftheGridIntegrationofWindEnergyinGermanOnshoreandOffshoreuptotheYear2020(DenaGridstudy),2010.

    14DraftreportbytheFederalAssociationoftheGermanEnergyIndustry(BDEW),March2011.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    24/57

    20

    installedsolarpowercapacityofapproximately33GWin2020(i.e.,doublingthecurrentinstalledsolarpowercapacity),theFederalMinistryofEnvironmentestimatesthatby2020therewillbeanother52GWofinstalledcapacityaddedfromsolarpowerandsmalleronshorewindparks.Giventhisforecast,theBDEWdraftstudyconcludesthatby2020theywouldneedtobuild195,000kmto380,000kmofadditionallinesontheGermanHVandMVdistribution

    voltagenetworks.Theassociatedcapitalcostisestimatedtobe13billionto27billion.

    Duetothedelayandconsiderableamountoftimeneededofthepermittingprocedureforplannedandnewtransmissionlines,theGermangovernmenthasalsorevealedpotentiallegalchangesinordertoaccelerateandsimplifytheplanningandpermittingprocedure.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    25/57

    21

    SECTION 2:Physical Infrastructure in Spain

    Inrecentyearsdistributedgeneration(DG)hasreceivedincreasingattentionasitcancontribute

    tothevariousgoalsofEUenergypolicy.Enhanceddiversityofsupply,areductioningreenhousegasemissions,efficiencygainsandmoreflexibilityininvestmentsaresomeofthemajorbenefitsassociatedwithDG.However,whentheamountofdistributedelectricitysupplyofrenewableenergysources(RES)surpassesaparticularlevel,itcannolongerbeignoredinplanningandoperationoftheelectricitysupplysystem.Therefore,improvementsoftheregulatoryframeworkoftheelectricitysupplysystemsarerequiredalongwiththegrowthoftheelectricitysupplyfromdistributedgeneration.

    Basicprinciplesforachievingsustainabledevelopmentfromaneconomic,social,andenvironmentalpointofviewinSpaintodayincludereducingdependenceonforeignenergy,betteruseofavailableenergysources,andagreaterawarenessoftheenvironment.Thesegoals

    increasinglydemandthedeploymentofrenewablesourcesofenergy,increasedefficiencyinelectricgenerationandareductioningreenhousegasesinaccordancewiththecommitmentsacquiredonsigningtheKyotoprotocol,bymeansofasearchforenergyefficientgenerationofelectricity.

    CreationofthespecialregimeforthegenerationofelectricitymeantanimportantmilestoneinSpainsenergypolicy.TargetsforrenewableenergyandcombinedheatandpowerarecoveredintheRenewableEnergyPlan20052010andintheStrategyforEnergySavingandEfficiencyinSpain(E4),respectively.Inviewoftheabove,althoughgrowthinthespecialregimeforelectricitygenerationhasbeenoutstanding,incertaintechnologiesthetargetsarestillfarfrombeingreached.

    Attheendof2010Spainhadatotalinstalledelectricpowerproductioncapacityof97.5GW(peninsularsystem).Thetotalinstalledcapacityinsolarandwindpowerproductionwas23.8GW(24percentofthetotalinstalledcapacity).Thistotalincludesapproximately9GWfromwindprojectsand4GWfromsolarPVprojectssmallerthan20MW.Continuedgrowthofdistributedrenewablegenerationseemsunabated.

    Therefore,Spanishgridoperatorsinrecentyearshavedevelopedtechnicalrulesandguidelinestomaintainsecurenetworkoperationwithlargeamountsofrenewables.AccordingtotheseextensiveexperiencestheSpanishpowerdistributionsystemissuitableforacomparativeanalysis.

    TheSpanishMinistryofIndustrythroughtheInstituteforEnergyDiversificationandSaving(IDAE)hasdevelopedthewebsiteRenovables(Renewables)MadeinSpain,http://www.renovablesmadeinspain.com/withtheobjectivetoinformtheworldaboutthesignificantpenetrationofrenewableenergiesinSpainandtheleadershipofSpanishcompaniesandorganizationsthathavemadethispossible.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    26/57

    22

    InthefollowingsectionstheresearchteampresentsthemainvoltagesofthetransmissionanddistributionnetworksinSpain.Thenwedescribetherelevanttypesofrenewableenergysourcesbyregion,alongwiththecharacteristicsofthegenerationplantsandtheirimplicationsforthegrid.Finally,weaddressthemostfrequentlyusedtechnicaloptionsandfacilitiestomanagetheintegrationofrenewableenergysourcesandtherebytocomplywithtechnical

    requirementsandguidelines.

    Overall System Planning and Development

    InMay2008,theSpanishMinistryofIndustry,TradeandTourismpassedthe20082116planningdocumentforthegasandelectricitysectorstoensurethesafetyandqualityoftheenergysupply.Thisplansetsoutasubstantialprograminvolvingtheconstructionofnewpowerinstallations.

    In2009RedElctricadeEspaa(REE),theSpanishcorporationthatoperatesthenationspower

    transmissionsystemandelectricitygrid,continuedtodrawupforecaststudies,bothforpowerdemandandcover.REE,asoperatoroftheinsularandextrapeninsularsystems,likewisedrawsupboththedemandandpowerpeakforecastsandtheestimatesofgeneratingequipmentneedsforthesesystems.

    REEiscarryingoutinvestmentsaimedatreinforcingthegridmeshinordertocoverincreasesindemandinsomeareasofthemainlandandtofacilitatetheestablishmentofthenewgenerationinstalled,mainlycombinedcyclesandwindpowerplantsand,toaneverincreasingextent,solarthermalplants.

    Network Structures in Spain

    ThispartofthereportdescribesthebasictechnicalconfigurationsofSpanishdistributiongridsincludingsubstationsandsecondarysubstations.Theanalysisfocusesonmedium andlowvoltagedistributiongrids.ItalsooutlinesrelevantaspectsofdistributedgenerationathighervoltagelevelsinSpain.

    Grid and Voltage Levels

    TheSpanishpowergridatallvoltagelevelsisathreephasealternatingcurrentgridoperatedatafrequencyof50Hertz.FourcommonvoltagelevelshavebeenestablishedintheSpanish

    powergrid

    as

    shown

    in

    Table

    5.

    This

    classification

    of

    voltages

    is

    according

    to

    the

    IEC

    definitions.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    27/57

    23

    Table 5: Overview of Voltage Levels in Spain per IEC Definitions

    System Name

    (IEC Definition)Abbreviation Rated Voltage Role

    Extra-high voltage EHV 400 kV, 220 kV15 Transmission grid

    High voltage HV132 kV, 110 kV

    66 kV, 45 kV

    Distribution gridMedium voltage MV

    30 kV, 20 kV,15 kV, 13.2 kV,

    11 kV

    Low voltage LV 400 V

    Spanishlegislation(RoyalDecree223/2088)givesasimilarclassificationforlinesabove1kV:

    Specialcategory:Linesofnominalvoltageaboveorequalto220kV,ortheonesoflower

    voltagethatareoperatedbytheTSO. Firstcategory:Linesofnominalvoltagebelow220kVandabove66kV

    Secondcategory:Linesofnominalvoltageequaltoorbelow66kVandabove30kV

    Thirdcategory:Linesofnominalvoltageequaltoorbelow30kVandabove1kV.

    Thecharacteristicsandfunctionsofthemainvoltagelevelsarediscussedbelow.

    The Spanish Transmission System

    ThetypicalvoltagelevelsforthetransmissiongridinSpainare400kVand220kV.The

    internationalconnectionsarealsoconsideredasapartofthetransmissionsystem.REEistheTransmissionSystemOperator(TSO)andownsabout99.8percentofthe400kVpowerlinesand98.5percentofthe220kVpowerlines.AccordingtocurrentSpanishregulationsall220kVmustbetransferredtotheTSO.

    TheElectricitySectorAct54/1997confirmedtheroleofREEasacornerstoneofsystemoperation.Thislawcreatedawholesalepowermarketthatrequiredaneffectivelymanagedtransmissiongridtoworkproperlyandacoordinatedoperationofthegenerationtransmissionsystemtoensurethatdemandwouldbesatisfiedatalltimes.

    Act17/2007of4JulyinSpainamendedthepreviouslawtoadaptittoEuropeanDirective

    2003/54/CEwhich

    established

    the

    common

    guidelines

    for

    the

    domestic

    power

    market.

    This

    law

    hasresultedinthedefinitiveconsolidationoftheREEsTSOmodel.Inthisregard,REE,asthesystemoperator,guaranteesthecontinuityandsecurityofthepowersupplyandtheproper

    15Inthepast,theDSOscontrolledpartsofthe220kVnetwork,butithasmostlybeenmovedtotheTSO.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    28/57

    24

    coordinationoftheproductionandtransmissionsystem,performingitsfunctionsbasedontheprinciplesoftransparency,objectivity,andindependence.

    REEisnotjustthemanager(operator)ofthetransmissiongridbutlikewisehasexclusiveresponsibilityfordevelopmentandmaintenanceofthegrid.Thisisquitedifferentfromthe

    German

    case

    where

    several

    transmission

    grid

    owners

    and

    operators

    coexist.

    LikeGermany,SpainispartoftheEuropeanNetworkofTransmissionOperatorsforElectricity(ENTSOE),andthereforeoperatesaccordingtorulesintheOperationHandbookofENTSOE.Thetransmissiongridisameshedsystemwithhighstandardsforsystemstability(frequency,voltage,dynamicstability)andsecurityofsupply.Overheadlinesdominatethegridinfrastructure.Figure7illustratestheSpanishtransmissionsystemwith400kVlinesrepresentedinredand220kVlinesrepresentedingreen.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    29/57

    25

    Figure 7: Spanish Transmission System

    Source: REE (http://www.ree.es/transporte/mapa_red_transporte.asp)

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    30/57

    26

    The Spanish Distribution System

    ThetypicaldistributionvoltagelevelsinSpainare132kV,110kV,66kV,45kV(highvoltage),30kV,20kV,15kV,13.2kV,11kV(mediumvoltage),and380V(400Vinthelatestregulation,RD842/2002,lowvoltage).

    InSpain

    the

    main

    distribution

    companies

    are

    Iberdrola,

    Endesa,

    Gas

    Natural

    Fenosa,

    Hidrocantbrico,andE.Onwithamarketshareof40percent,39percent,15percent,2.5percent,and2.5percenteach,whichcombinedrepresent99percentofthetotaldistributionactivity.

    HV Distribution Grid

    SpanishHVgridsareofmeshedtopology(moreorlesscomplex)andcanbeoperatedalsoinameshedphilosophy(closedloop)orradial(openloop).Theexceptionareafewradialbuiltnetworksinruralareas,butevenintheseareasthemostcommontopologyistheopenloop,sothereispossibilityofsupportthroughasecondline.ThisgridisusedtofeedthedistributionsubstationsthatareconnectedtotheMVgrid.ThelayoutoftheHVbusbarofthese

    distributionstationsdependsontheareatheyarebuilt.MostoftheHVgridcomplieswithn1securitycriterion(fortransformersandlines).Securitycriterian2canbeappliedforHVgridsassociatedtourbanareas,whenthereareforexamplesubstationsfedbycriticaldoublecircuitlines.Figures8through10illustratedifferentnetworktopologiesappliedattheHVlevelinSpain.

    Figure 8: Looped HV Grid (Single Source Point)

    Source: KEMA

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    31/57

    27

    Figure 9: Bridge Configuration (HV Grid Fed from Two Points)

    Source: KEMA

    Figure 10: HV Mesh Configuration

    Source: KEMA

    MV Distribution Grid

    TheSpanishmediumvoltage(MV)grid)inSpainisdifferentiatedbyurban,semiurban,and

    ruralareasthathavedifferentpowerquality,reliability,andcontinuityofsupplyrequirements.

    Urban Medium-voltage Grids

    UrbanMVgridsinSpainservehighdensityurbanareasfedbyundergroundcables.Thetypicalcablecrosssectionis240to400mm(nominallyequivalenttoarangeof400kcmilto750kcmil),butthereisasignificantheterogeneityofcrosssectionespeciallyinthelargecitiesduetodecadesofdifferentplanningcriteriaandnetworkdevelopmentcriteria.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    32/57

    28

    ThedesignphilosophyofMVgridsinSpainistoservetheMV/LVstationsinawaytheycanalwaysbefedfromatleastfromtwodifferentpoints.ThereshouldnotbeMV/LVstationsonsingle,radialMVsources.Thisisachievedbyapplyingmainlytwostandardnetworkdesigns:

    Reflectionpointandsupportcircuit

    Distributionpoint

    Figure11illustratestheconceptbehindthereflectionpointandsupportcircuitdesign.Theideaistohaveanormallyopenbackupcircuit(CircuitodeApoyo)thatincaseoffaultinoneofthemainfeederswillbeabletocloseintothereflectionpointandfeedtheloadonthehealthyportionofthefaultedfeederafterthefaulthasbeenisolatedbyremotecontrolledswitches.TheseswitchesareassociatedtoRMUs(RingMainUnits)intheMV/LVstations(circlesinthefigure).IntheexampleshowninFigure11,afault(indicatedbythelightningbolt)hasoccurredonthefirstsectionofCircuit1nearthesourcestation(ST),whichhasbeenisolatedandtheremainderofthecircuitloadpickedupfromthereflectionbusviathebackupcircuit(greenindicatesaclosedbreaker,andwhiteindicatesanopenbreaker).

    Figure 11: Urban MV Grid: Reflection Point and Support Circuit Design16

    Source: Universidad Pontificia Comillas: Master Thesis by Trinidade Moya

    Figure12illustratesthedistributionpointdesignthatisusedmainlyinhighdensityloadareas.Reliabledistributioncentersarebuiltascloseaspossibletotheloadcenterandtwoormorehighcapacitytrunkfeeders(circuitosallementadores)areconstructedfromtheremoteHV/MVtransformationsubstationstothedistributioncenters.Noloadisconnecteddirectlytothetrunkfeeders.MultipledistributioncircuitsemanatefromeachdistributioncenterandfeedmultipleMV/LVstationswithinthehighloaddensityarea.Figure12illustratesaconfigurationwithtwosuchdistributioncenters,butothercombinationscanbeused.TheMV/LVstationsnormally

    consist

    of

    transformers

    above

    400

    kVA,

    with

    one

    or

    more

    transformers

    per

    station.

    16STmeanssubstation.CircuitodeApoyomeansbackupcircuit.CXmeansreflectionpoint;abuswithcircuitbreakersandgroundswitchesusedtogroundthecircuitswhenthebreakersareopen.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    33/57

    29

    Figure 12: Urban Medium Voltage Grid: Distribution Point design17

    Source: Universidad Pontificia Comillas: Master Thesis by Trinidade Moya

    Rural Medium-voltage Grids

    Spainhasmadeadifferentiationbetweenconcentratedanddispersedruralareas.Botharefed

    mainly

    by

    overhead

    lines,

    though

    dispersed

    rural

    areas

    have

    longer

    lines,

    commonly

    causing

    voltagedropproblemsrelatedtothelargeimpedanceofthelongoverheadlines.Thedesignnormallyconsistsofamainfeederwiththesameconductorcrosssectionoveritsfulllength,

    17CentrodeRepartoCR1and2meansDistributionCentersNo.1and2,SubestaciaonTranformadorameansTransformationSubstation,TrafoT1andT1meanBank1and2.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    34/57

    30

    fromwhichseveralderivativefeeders(branches)aresuppliedtypicallywithsmallerconductors.

    SimilarlytotheUnitedStates,theruralnetworksinSpainareequippedwithswitchesalongthelines(reclosersandsectionalizers)inordertomoreefficientlyisolatefaultysectionsandrestore

    the

    supply

    to

    the

    healthy

    ones.

    The

    main

    feeders

    of

    the

    rural

    network

    can

    be

    fed

    from

    two

    alternativesubstationsoperatinginanopenloopmanner(makinguseofanormallyopenpointbymeansofaswitch),resemblingtheloopconnectedwithnormalopencontactphilosophythatisusedinGermany.Thisallowstheuseoflooprestorationschemesincaseoffaults.ThetypicalSpanishruralMVgridstructureisillustratedinFigure13.Unlikeurbanareas,MV/LVstationsinruralareasareusuallysuppliedfromasinglecircuit.

    Figure 13: Rural MV Grid Struc ture

    Source: KEMA

    LV Distribution Grid

    Thelowvoltagegrid(LVgrid)isathreephase400V,comprisingalsoaneutralwire.Thesegridsarebuiltandoperatedinaradialway,regardlessofbeingurbanorrural.Urbangridsaredominatedbyundergroundcables,whileruralgridsaredominatedbyoverheadlines.Ruralgridsaremoreexposedtovoltagedeviations(droporrise)duetotheirhigherperunitimpedancecombinedwithlongerlength.ThetypicalSpanishLVgridstructureisillustratedinFigure14.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    35/57

    31

    Figure 14: LV Grid Structure

    Source: KEMA

    Renewable Energy Sources (RES) in Spain

    Electricityproducers

    in

    Spain

    are

    subjected

    to

    different

    legislation

    depending

    on

    the

    technology

    andenergysourceused.Producersareclassifiedintwomaingroups:specialregime(ex:renewableenergysources)andordinaryregime(ex:conventionalpowerplantssuchasnuclearpowerstations).Figure15showsabreakdownofthetotalinstalledcapacitybytechnologyattheendof2010.Figure16showstheannualevolutionoftheinstalledpowerbytechnologyfrom2005to2010.

    Figure 15: Breakdown of the Total Installed Capacity by Technology at the End of 201018

    Source: REE (Red Elctrica de Espaa)

    18ThecategoryOtherSpecialRegimeincludescogenerationandwastetoenergyplantsbelow50MW.

    Installed Pow er (GW)

    Combined cycle; 25,2

    Fuel/Gas; 2,9

    Coal; 11,4

    Nuclear; 7,7Hydro; 16,7

    Wind; 19,8

    Solar; 4,0

    Other Special Regime;9,8

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    36/57

    32

    Spainhadatotalinstalledcapacityinelectricpowerproductionof97.5GW(peninsularsystem)bytheendof2010.Thetotalinstalledcapacityinsolarandwindpowerproductionwas23.8GW(24percentofthetotalinstalledcapacity)attheendof2010.Nexttocombinedcycleplantsat25.2percentofthetotalresourcecapacity,windwasthenextlargestblockat19.8percentoftotal.

    Figure 16: Annual Growth of Spains Installed Power Generation (GW)

    Source: REE (Red Elctrica de Espaa)

    Distributed Generation

    Generally,distributedgenerationcomprisesgenerationplantsthatareconnectedtolow and

    mediumvoltagedistributiongridsclosetoenergyconsumersandgenerationplantsforselfsupply.However,thisdefinitionassuchisnotusedinpracticeinSpain.Althoughtherearedifferentremunerationschemesforgeneratorsofdifferentsize,whichthereforewillbeconnectedtodistinctvoltagelevels,themainsplitinSpainismadebetweenthesocalledordinaryandthespecialregime.Thetechnologieseligibleforspecialregimearecogeneration,renewableenergysourcesandwaste.AccordingtotheSpanishlawRD661/2007,therenewableenergysourcesgroupisdividedineightsubgroupsasfollows:

    b.1:solarenergy

    b.2:windenergy

    b.3:waves,geothermic,tides

    b.4:andb.5:hydropower

    b.6,b.7,andb.8:biomassandbiogas

    Installationswithaninstalledcapacitylargerthan50MWarenotincludedinthespecialregime.However,iftheseinstallationsproducerenewableenergytheyreceiveapremiumequal

    Installed Pow er (GW)

    12,2

    15,5

    21,0

    21,7

    23,1

    25,2

    6,6

    6,6

    4,8

    4,4

    3,0

    2,9

    11,4

    11,4

    11,4

    11,4

    11,4

    11,4

    7,9

    7,7

    7,7

    7,7

    7,7

    7,7

    16,7

    16,7

    16,7

    16,7

    16,7

    16,7

    8,7

    11,6

    14,8

    16,2

    18,7

    19,8

    8,4

    9

    9,7

    12,6

    13,3

    13,8

    0 10 20 30 40 50 60 70 80 90 100

    2005

    2006

    2007

    2008

    2009

    2010

    Combined cycle Fuel/Gas Coal Nuclear Hydro S.R. Wind S.R. Other

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    37/57

    33

    tothatpaidtosmallerrenewableprojects(i.e.,thoselessthan50MW),butdiscountedby2080percent.DuetothisfinancialdisincentivetherearenoindividualrenewableenergyprojectsinSpainwithinstalledcapacityover50MW.

    Point of Common Coupling

    The

    definition

    of

    point

    of

    common

    coupling

    in

    Spain

    is

    similar

    to

    Germany,

    i.e.

    it

    is

    the

    grid

    connectionpointofagenerationplant.Itslocationdependsontheratedpowerofthegenerationplantandtechnicalandeconomicaspectsofthepowergrid(voltagelevel,utilizationofassets,networkimpedance,etc.).

    Regional and Quantitative Allocation of Renewable Energy

    In2009,thegeneratorsoperatinginthespecialregimesupplied32percentofthegrosselectricalconsumptioninSpain.Windfarmsalonesupplied14.5percentofSpainsgrosselectricalconsumptionin2009.

    Figure17showstheshareofthedifferentrenewabletechnologiestothetotalinstalledcapacity

    in

    renewable

    electricity

    production

    for

    the

    special

    regime

    (S.R.).

    Figure 17: Breakdown of the Total Renewable Installed Capacity by Technology at the End of 2009

    Source: REE (Red Elctrica de Espaa)

    Wind Energy

    WindpoweristherenewablesourcethathasexperiencedthelargestdevelopmentinSpain.ThepopulationdensityinlargeareaswithgoodwindresourceismuchlowerthaninGermany,

    whichhas

    provided

    opportunities

    to

    build

    larger

    wind

    farms.

    The

    development

    has

    taken

    place

    throughlargeinvestorssuchaselectricityandconstructioncompanies.Recently,thetrendisfornonelectriccompaniestoselltheirinstallationsduetotheincreasingtechnicalrequisitesinthissector.Thedevelopmentofthewindpowersectorgoesinthedirectionoflargerwindfarmsconnecteddirectlytothetransmissiongridduetothetechnicaldevelopmentofwindturbinestechnologyandtheavailablecapacityinthetransmissiongridtotransportmoreelectricpower,gettingbetterprices.Whentheinstallationcapacityislargerthan50MW,promotersdivideintoseveralinstallationsunder50MWinordertogetthehighestpayment.About60percentofthe

    Installed Power (% Total Renewable i nstalled Power)

    S.R. Hydro 7,8%

    S.R. Wind 75,1%

    S.R. Solar 13,9%S.R.Biomass 2,6%

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    38/57

    34

    totalinstalledwindpowerisconnectedtothetransmissiongrid.Oftheremaining40percentconnectedtodistributionthelargemajorityisconnectedtothe132/110/66kVgrids.Only25percentisconnectedtotheradialoperateddistributiongrids(30kVandbelow).Windpowerisdistributedalloverthecountry,butthereissignificantincidenceoflargewindfarmsinthenorthernregionsofGaliciaandtothesoutheastinCastillaLaMancha.Figure18showsthe

    installedwindcapacitydensity(kW/km2)inSpain.

    Figure 18: Wind Capacity Geographic Density in Spain

    Source: REE (Red Elctrica de Espaa)

    Spainswindproductionishighlyvariablebothhourbyhouranddaytoday.Forexample,Spainsrecordhighwindproductionwasabout11:00amonFebruary24,2010at12,916MW,andtherecordlowwasonJune3,2009at164MWintheearlyafternoon.Onmostdays,windproductionpeaksatnight,andreachesaminimumbetweennoonand2:00pm.Downwardrampsinwindproductioninthemorningsoftenincreasemorningrampupsofconventionalgenerationinthesummeralongwithdispatchofpumpedhydroplants.SomekeyfactsaboutwindpowerinSpain:

    RenewableenergyplanforSpain(20052010):~20,000MW(accomplished)

    Officialnetworkplanningfor2016:29,000MW

    Furtherincreaseexpectedfor2020incompliancewithproposedECinitiatives Productionrecords:54percentofdemand at3:50amonDecember30,2009

    Solar Energy

    Spainleadstheworldinthedevelopmentofsolarenergy,asitisoneofthesunniestcountriesinEurope.Morethan95percentofthetotalPVinstalledcapacityisconnectedtothe

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    39/57

    35

    distributiongrid(below220kV)aswellasabout35percentofthetotalthermal(conventional)installedgeneratingcapacity.

    Figure19showsthedistributionofsolarPVandsolarthermalpowerintheSpanishautonomouscommunities,byend2009.Atthistimetherewereabout3.3GWofsolarPVwere

    connected

    to

    the

    grid.

    While

    solar

    thermal

    is

    present

    only

    in

    the

    communities

    of

    higher

    solar

    radiationexposure,suchasAndalucia,solarPVismuchmoreuniformalongthecountry,althoughstilldominatedbythesoutherncommunities.

    a) b)

    Figure 19: Installed Solar Power (MW) in the Autonomous Communities of Spain by End 2009a) PV and b) Solar Thermal

    Source: REE and ASIF (Associacion Industrial Fotovoltaica)

    AtpresenttheTSOhasnoremotemonitoringorremotecontrolcapabilityforanyofthe3.3GWofPVpowergenerationbecausetelemetrytotheTSOisonlyrequiredforDGprojectsof10MWorlarger,andtherearenoPVprojectsofthissizeinSpain.AstheinstalledMWofsolarPVexpands,thelackoftelemetryontheseprojectswillcreategreateroperatingproblemsfortheTSO.Also,SpainswinterpeakdemandisintheeveningwhenPVmakesnocontribution.Inthewintertheuseofmoltensaltenergystorageandhybridizationwithnaturalgas19canenablesuchsystemstoproduceduringthepeakdemandhours.Ontheotherhand,concentratingsolar

    thermalhasapositivecorrelationwithSpainssummerpeakdemand.

    19HybridizationwithnaturalgasislimitedbySpanishregulationsto15percentofsolarthermalplantcapacity,whereashybridizationwithbiomassorbiogasisallowedupto50percent.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    40/57

    36

    RES Compensation Arrangements in Spain

    RESrevenuescanbedeterminedbyoneofthetwofollowingalternatives:

    Feedintariff:thepricepaidpereachkWhproducedbyaRESinstallationisregulatedandfixedtoaconstantvalue,independentofmarketfluctuations.TheannualevolutionofthistariffdependsontheevolutionoftheaveragereferenceelectricitytariffinSpain(RT),asfeedintariffs(FIT)aresetasapercentageoftheRT.Thetariffisfixedforacertaincontractduration(e.g.,15years).TheregulatedfeedintariffforeachREStechnologydependsonthetypeofthetechnologyandontheyearwhentheinstallationisputonservice.Thisalternativeisaheritageofthepreviousregulation.RESfacilitiesgreaterthan10MWarecommittedtogivetodistributioncompanies(DISCOs)aproductionschedule30hoursinadvance,beingallowedtoadjustsuchschedule1houraheadofeachintradailymarket(sixcallsduringaday).HourlyenergydeviationsfromtheproductionschedulearepenalizedatapriceperkWhdeviatedequalto10percentoftheRT.Thispenalizationdoesnotapplyinadeadbandof20percentoftheproduction

    scheduledforRESfacilities.Thisrule,whichimpliesabigchangeinRESregulationfromthepreviousframework,willapplytowindfarmsonlysinceJanuary1,2006.AsthegovernmentREStargetsarereached,theFITdecreases.WhentheFITcontractperiodforagivenRESprojectisover,itsenergyissoldatthemarket(pool)price.

    Wholesalemarket:RESaregivenincentivestojointhewholesalemarket,followinginthiscasepracticallythesamerulesasordinarygenerators.AstheRESwillfacenewtechnicalandeconomicconstraintsbydoingso,theirremunerationschemeprovidesanadditionaleconomicincentive.Thetotalincomeisthesumofthemarketsellingprice,plusapremiumthatrepresentstheexternalitiesinasimilarwaytopreviousregulation,plustheabovementionedadditionalincentivetoaccessthemarket.Thepremiumand

    theadditionalincentivearesetalsoasapercentageoftheRT.AsRESareintegratedinthewholesalemarket,theyhaveaccesstoalltherestofelectricitymarkets(daily,intradaily,ancillaryservices,etc.).Theycanearnmoneyiftheyareabletoparticipateinsuchmarketsorpayiftheyusesuchservices,beingthemostimportantthecostofproductiondeviationsfromthepredictions.Inthiscase,thereisnodeadband,andthepriceissettledthroughmarketmechanisms.

    REShaveanadditionalincomeassociatedtoreactivepowerthatdependsonthetimeperiod(peak,flat,orvalleyhours)anditcanbepositiveornegativedependingonthepowerfactorthe

    unit

    is

    providing.

    This

    income

    encourages

    RES

    to

    consume

    reactive

    power

    (lagging

    power

    factor)invalleyhoursandtosupplyreactivepower(leadingpowerfactor)inpeakhours.Inpreviousregulationstherewasanincentivetokeepthepowerfactorequaltoone.

    AninterestingaspectofcurrentSpanishlegislationistheeconomicincentivethathasbeenfixedforwindfarmstobeabletocopewithvoltagedipswithouttripping.Thisisoneofthemaintechnicalproblemsforwindgenerationexpansion,withhighpenetrationlevelsofwindgenerationthatcanalltripatonceifthereisavoltagedipinthetransmissionnetwork,

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    41/57

    37

    threateningsystemstability.Thereisaneconomicincentiveof5percentofRTtoeachkWhsoldbyeachimmunizedwindparkagainstvoltagedipsduringaperiodoffouryears.

    Interconnection Technical Requirements in Spain

    RESproducersthatwishtoconnectattheEHVlevelmustconnectaminimumcapacityof100

    MWat

    any

    one

    point

    of

    interconnection

    to

    the

    220

    kV

    grid

    or

    at

    least

    250

    MW

    at

    any

    one

    point

    ofconnectionwithtothe400kVgrid.ItispossibleseveralforsmallerprojectdeveloperstomakeajointapplicationtotheTSOtofulfillthisrequirement.RD436/2004definesadditionalcriteriaandareagainstatedagainintheRD661/2007(annex11)withsomemodifications:

    1. Thecombinedcapacityofallspecialregimegeneratorsconnectedtoonelineofthedistributiongridcannotexceed50percentofthecapacityoftheline.

    2. Thecombinedcapacityofallspecialregimegeneratorsconnectedtoonesubstationorsubstationtransformercannotexceed50percentofthecapacityoftherespectivesubstationortransformerservingthatvoltagelevel.

    3. Forproducerswithoutstoragecapabilitiesornotabletodirectlymanagetheiroutput,

    suchaswindpowerandPVproducers,itisalsoestablishedthattheMWcapacityoftheproducerorgroupofproducerssharingaconnectionpoint(pointofcommoncoupling),willnotexceed5percentofthegridshortcircuitduty(atthatpointonthesystem)expressedinMVA.Fordispatchablegenerators(biomass,solarthermal),theMWcapacityshallnotexceed10percentofthegridshortcircuitduty(atthatpoint)expressedinMVA.ThisisintendedtolimitthemaximumvoltagedeviationduetoDGoperationtotherangeof510percentofthelocalgridsnominalvoltage.

    BecauseoftheabovelimitationsingridimpactsduetoDG,veryfewbackfeedsituationshave

    developed

    in

    Spain.

    In

    practice,

    the

    criteria

    above

    only

    restrict

    the

    connection

    to

    the

    distributiongridandarenottheconnectiontothetransmissiongrid.Basedonutilityexperienceregardingconnectiontothedistributiongrid, criteria1and2fromthelistabovelimitthecapacitythatcanbeconnectedinabout10percentofthecases,whilecriteria3islimitinginapproximately90percentofthecases.DGprojectsinSpaindonothavemuchexperienceconnectingtotheMVdistributiongrid,sotheselimitationsmayneedtobereviewedinthecomingyearsaswell.Distributioncompaniesgenerallyconsiderthesecriteriatobeadequate,althoughtherehavebeensuggestions/discussionsontheinclusionoflocalloadasalimitingfactorfortheinterconnectionofspecialregimegenerationduetoconcernaboutbackfeedintoHVandthetransmissiongrid.

    Photovoltaicplants

    smaller

    than

    100

    kVA

    and

    connected

    to

    low

    voltage

    networks

    (below

    1kV)

    havespecificconnectionrequirementsenactedintheRoyalDecree1663/2000.Themostrelevantrequirementsofthislegislationaretheobligationstomaintainvoltageattheinterconnectionpointat5percentofthenominalvoltageandoperateatapowerfactorascloseaspossibletounity.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    42/57

    38

    Implications on Power Grid Operation

    REE(TSO)has,alongtheyears,beenexperiencingwindgenerationtripsduetovoltagedips.Asaresult,ithasbeenmonitoringvoltageandgeneratorperformancesince2005.AnoperationalprocedurehasbeenimplementedaspartoftheSpanishgridcodethatestablisheswhen

    generatorsmustremainconnectedinordertoallowridethroughintheeventofafault.StartingJanuary1,2008,allnewwindfacilitieshadtocomplywiththisvoltageridethroughregulation.Mostexistingplantshavemadethenecessaryretrofitstocomply,andonlysome1,000MWto1,500MWplantsstillneedtobeadapted.REEnowrunsrealtimesimulationtomodelscenariosofthreephasefaultsin70ofits400kVsubstations.ThesesimulationsallowtheTSOtotakeactionsfromadedicatedcontrolcentreinordertoensuresafesystemoperationandavoidfurthergenerationtripping.

    Voltagecontrolforconventionalgenerationistypicallydoneatthesubstation.Thatisnotsufficientwherealargepenetrationofrenewablegenerationexists.REEhasinstitutedasystemtoincentiverenewablegeneratorstoprovidereactivepower:Generatorsreceiveabonusor

    sufferapenaltyfor+8percentto 4percentof78.44perMWh,dependingonthepowerfactor.Thesystemoperatorissuesinstructionstomodifythepowerfactorsettings.

    SinceApril1,2009,REEhasorderedallDGunitsabove10MWtooperateatpowerfactorsbetween0.98and0.99inductiveinordertoeliminatesuddenchangesinthevoltageprofileandavoidhighvoltages.REEbelievesthattheultimatesolutionistoenablevoltageschedulingcapabilityforallgeneratorsgreaterthan10MW.AkeyissueremainsastowhenandhowtoautomateDGvoltagecontrolandwhetherthisrequiresalocal,regional,ornationalstructure.

    Connection Process to Transmission Network in SpainConnection Application Phase

    Therearetwodifferentstages,accordingtoP.O12.2ofREE:

    1 Requestforaccesstothetransmissiongrid.

    2 Requestforconnectiontothetransmissiongrid.

    Forstage1,thegeneratormustsubmitarequestforaccesstoaspecificnetworklocation(node)andsupplyavarietyoftechnicaldataaboutitsgeneratingplantfromratedpowertoPSS/E

    controlblock

    models

    for

    dynamic

    analysis.

    REE

    also

    requests

    the

    seasonal

    generation

    patterns.

    Itisacompletesetofdataonthegeneratingunit,whichiscomplementedwithdataoninterconnectionlinesandalsowithdataonstepuptransformers.Furthermoretherearedifferentrequestsdependingonthegenerationtechnology.REEP.O12.1annexeslistallthenecessarydatafordifferentgenerationtechnologies.Afterreceivingtherequestforaccessaccompaniedbythegeneratordata,theSpanishTSOhastwomonthstodetermineifthesystemcapacitywillsupporttheconnection.Ifso,thegeneratoradvancestostagetwo.

  • 7/30/2019 Kema_Memo 1_Physical Infrastructure and DG Interconnection

    43/57

    39

    Atstagetwothegeneratormustsubmitthebasicdesignofitsinstallation,theconstructionprogramandareportshowingthattheinstallationfulfillsalltheconnectionrequirementsinInstalacionesconectadasalareddetransporte:Requisitosminimosdediseoyequipamiento.Thisdocumentdefinesprotectionrequirements,groundingrequirements,switchgeararrangements,etc.Thegeneratorhasonemonthtodeliverthesedocumentsafter

    receivingapositivestage1approval.Initsturn,theTSOhasonemonthtodecideifthegeneratorsdocumentationisadequate.

    Thegeneratordoesnothavetoperformanystudiesitself,sincethestudiesarecarriedoutbytheTSOusingdatasuppliedbythegenerator.ThegeneratorisfreetoasktheTSOforinformationaboutaparticularlocationornodeofthegridifhewishestoperformhisownstudiestoevaluatethefeasibilityoftheinterconnectioninagivennode.The[decidingauthority]usestheTSOstudiesforitsdecision.

    Ifthestateoneproposalfails,thegeneratorcanproposealternativeconnectionpointsorrequestinformationonthegridreinforcementcostsnecessarytoeliminatetherestrictions.Ifthe

    developeris

    willing

    to

    pay

    for

    these

    reinforcements,

    while

    advancing

    to

    stage

    two,

    he

    must

    pay

    upfrontfor20percentofthesecosts.

    Commissioning Phase

    Twomonthsbeforetheplannedinterconnectiondate,thegeneratormustprovidetheTSOwithat