EE241 - Spring 2011

28
1 EE241 Spring 2011 EE241 - Spring 2011 Advanced Digital Integrated Circuits Lecture 20: High-Performance Logic Styles Styles Announcements Quiz #3 today Homework #4 posted This lecture until 4pm Reading: Chapter 8 in the Bowhill text (by Gronowski) Background material from Rabaey, 2 nd ed, Chapters 6,10 2

Transcript of EE241 - Spring 2011

Page 1: EE241 - Spring 2011

1

EE241 Spring 2011EE241 - Spring 2011Advanced Digital Integrated Circuits

Lecture 20: High-Performance Logic StylesStyles

Announcements

Quiz #3 today

Homework #4 posted

This lecture until 4pm

Reading: Chapter 8 in the Bowhill text (by Gronowski)

Background material from Rabaey, 2nd ed, Chapters 6,10

2

Page 2: EE241 - Spring 2011

2

Outline

Last lectureLeakage management

Power gating

Back bias

This lectureOptimal leakage

Back to design for performance

3

Optimal VDD VThOptimal VDD, VTh

Page 3: EE241 - Spring 2011

3

Optimal VDD, VTh

Adjusting VDD, VTh trades of energy and delay

We studied energy-limited designThere are alternate ways for optimizing energy and delay together

E.g. energy-delay product (EDP)

Or EnDm, n,m > 1

5

Optimal EDP Contours

6Gonzalez, JSSC 8/97

Page 4: EE241 - Spring 2011

4

Topology Inverter Adder Decoder

(ELk/ESw)ref 0.1% 1% 10%Reference Design:Dref (Vdd

max,Vthref)

Sizing, Supply, Threshold Optimization

Large variation in optimal circuit parameters Vddopt, Vth

opt, wopt

Vddmax Vth

max

7Technology parameters (Vdd

max, Vthref) rarely optimal

Vddmin Vth

min

Energy efficient curvef (W,Vdd,Vth)

gy

(Ere

f)

Sensitivity W Vdd Vth

(Dref,Eref) 1.5 0.2

(D E ) 1

Result: E-D Tradeoff in an Adder

ReferenceDesign(Dref,Eref)

(Dmin,Eref)

En

erg (Dref,Emin) 1

(Dmin,Eref) 22 16 22

-80%

-40%

80% of energy savedwithout delay penalty

8Delay (Dref)

(Dref,Emin) 40% delay improvement without energy penalty

Page 5: EE241 - Spring 2011

5

Energy-constrained delay

Active power2

DDact fCVP

f = 1/LDtp

Leakage power

Eli i t i bl (V ) d fi d P (V )

DDS

VV

leak VeIPDDTh

0

9

Eliminate one variable(VTh) and find Pmin(VDD)

Nose, ASP-DAC’00

Large (ELk/ESw)opt

Flat EOp minimum

T l d d t

Minimum energy: ESw = 2ELk

0.8

1

Opef

Vthref-180mV

0 81Vmax

2

ln

Lk Sw optd

avg

E EL

K

Topology dependent

0.2

0.4

0.6

EO

p /

nom

inal

EOre

nominalparallelpipeline

0.81Vdd

Vthref-95mV

0.57Vddmax

Vthref-140mV

0.52Vddmax

10Optimal designs have high leakage (ELk/ESw ≈ 0.5)

10-2

10-1

100

101

0

ELeakage

/ESwitching

pipeline

Page 6: EE241 - Spring 2011

6

Subthreshold Optimum

f = 30kHz Minimum is independent of VT

11

Minimum is independent of VT

Calhoun, JSSC 9/05

High-Performance High Performance Logic Styles

Page 7: EE241 - Spring 2011

7

CMOS Logic Styles

CMOS tradeoffs:Speed

P ( )Power (energy)

Area

Design tradeoffsRobustness, scalability

Design time

Many styles: don’t try to remember the names –

13

Many styles: don t try to remember the names –remember the principles

CMOS Logic Styles

VDD

Complementary

Pass Transistor Logic

PUN

PDN

ABC

OUT

ABC

LOGIC

NETWORK

ABC

OUT

14

GND

robustscales

large and slow

simple and fastnot always very efficientversatile

Page 8: EE241 - Spring 2011

8

CMOS Logic Styles

VDD

Ratioed Logic

VDD

Dynamic Logic

LOAD

ABC PDN

OUT

GND

RPDN <<RLOAD

PDN

In1In2

In3

Out

CL

15

GND

small & faststatic power

Small & fastest!Noise issuesScales?

Pulsed Static CMOS

RH – Reset highRL – Reset low

16

Fast pull-up Fast pull-down

Chen, Ditlow, US Pat. 5,495,188 Feb. 1996.

Page 9: EE241 - Spring 2011

9

PS-CMOS

Evaluation and reset waves: reset is 1.5x slower

17

PS-CMOS

Advantages:

No dynamic nodes – good noise immunity

R t d l l th l tiReset delay slower than evaluation

No data dependent delay (worst case gets better)

No false transitions

Disadvantages

Width of reset wave limits logic depth

M i i d i

18

Margin in design

Page 10: EE241 - Spring 2011

10

Pass-Transistor LogicPass Transistor Logic

Pass-Transistor Logic

B

Inpu

ts Switch

Network

OutOut

A

BB

• N transistors

• No static consumption B

20

No static consumptionA

BF = AB

0

• Transistor implementation using NMOS

Page 11: EE241 - Spring 2011

11

Pass-Transistor Logic Families

21

Pass-Transistor Logic

Performance of PTL:Advantage over CMOS in implementing XOR, MUXDisadvantage in implementing AND, OR.

Datapaths, arithmetic circuits are examples of use:Adders and multipliers use XOR, MUXAdvantage of complementary implementation

Comparisons:Wh l i f il i i t d d th l h t

22

When a new logic family is introduced, the examples are chosen to show its advantages; (not disadvantages).Comparison papers sometimes point to the disadvantages

Full-custom design

Page 12: EE241 - Spring 2011

12

Examples of PTL Styles

Complementary Pass-Transistor Logic (CPL)NMOS-only pass-transistor network

Transmission-gate logicNMOS+PMOS pass gates

Double Pass-Transistor Logic (DPL)NMOS+PMOS network

Numerous other logic families

23

Numerous other logic families

Complementary Pass-Transistor Logic (CPL)

FPass-Transistor

Network

AABB

FPass-TransistorNetwork

B

AABB

Complementary

• Complementary functions• Reduced number of logic levels

24

• Reduced number of logic levels• Less transistors than CMOS • Fast – reduced load• Complementary inputs – complementary outputs• VT drop – several solutions

Page 13: EE241 - Spring 2011

13

CPL

25

Level restoration

Yano et al, CICC’89, JSSC 4/90

CPL

26

Same topology of networksJust different signal arrangements

Page 14: EE241 - Spring 2011

14

CPL vs. CMOS

27

Leap Cell Library

28

Yano et al, CICC’94, JSSC 6/96

Goal: Implement full logic functionality with small libraryRely on automated design methodology

Page 15: EE241 - Spring 2011

15

Various Logic Functions of the Lean Library

29

Double Pass-Transistor Logic (DPL)

B

A B B A

VDD

BA BAND/NAND

A A

OO

A B BA

AB

B A B A

A B

XOR/XNOR

30

A

B

B

OO

A

B

A

XOR/XNOR

Page 16: EE241 - Spring 2011

16

Applications of DPL

1.5ns 32-bit ALU in 0 25 m CMOS

Full adder:

in 0.25m CMOS

31Suzuki, ISSCC’93JSSC 11/93

Applications of DPL

54x54bit DPL Multiplier in 4.4ns

32Ohkubo, CICC’94, JSSC 5/95

Page 17: EE241 - Spring 2011

17

4:2 Compressor in DPL

33

Adder in DPL

344-bit adder 8-bit adder

Page 18: EE241 - Spring 2011

18

Domino LogicDomino Logic

Reading

Chapter 8 in the Bowhill text (by Gronowski)

Background material from Rabaey, 2nd ed, Chapters 6,10

36

Page 19: EE241 - Spring 2011

19

Dynamic Logic

VDD VDD

Mp

M

PDN

In1In2

In3

OutMe

M

PUN

In1In2

In3

Out

CL

CL

37

Me Mp L

p networkn network

2 phase operation:• Evaluation

• Precharge

Dynamic Gates

38

NMOS Inverter PMOS Inverter

Courtesy of IEEE Press, New York. 2000

Page 20: EE241 - Spring 2011

20

Dynamic Logic

Advantages:FastCompactCompact

Need to watch out for:PowerNoise marginsCharge leakageCharge sharing

39

Charge sharingNoise couplingCharge injectionCascading dynamic gates

Logical Effort

In

Out

40LE =

Page 21: EE241 - Spring 2011

21

Logical Effort

Out

Out

41LE =

LE =

Charge Leakage

42Courtesy of IEEE Press, New York. 2000

ILeak = (IN sub + IN diode) – (IP sub + IP diode)

Time to switch the next gate: tsw = (CDYN * Vsw)/ILeak

Limits the minimum frequency:fmin = 1/(tsw * #phases per clk cycle)

Page 22: EE241 - Spring 2011

22

Compensating Leakage

43

Charge Sharing (Redistribution)

VDD case 1) if Vout < VTn

MpOut

ACL

C

MaX

CLVDD CLVout t Ca VDD VTn VX – +=

or

Vout Vout t VDD–CaCL-------- VDD VTn VX – –= =

44

Me

B = 0Ca

Cb

Mb

Vout VDD

CaCa CL+----------------------

–=

case 2) if Vout > VTn

Page 23: EE241 - Spring 2011

23

Charge Sharing - Solutions

VDDVDD

Mp

Out

A

B

Ma

Mb

Mbl MpOut

A

B

Ma

Mb

Mbl

45

Me Me

(b) Precharge of internal nodes(a) Static bleeder

Aside: Dynamic Latch

46Courtesy of IEEE Press, New York. 2000

Page 24: EE241 - Spring 2011

24

Charge Sharing

47

A,B = 0DYN prechargedCharge sharing ifSEL toggles

Courtesy of IEEE Press, New York. 2000

Aside: Noise in ICs

Sources of noiseCoupling

Device couplingDevice couplingCapacitive coupling between wiresInductive coupling

Supply line bounceCharge Injection

From substrate

48

-particles, cosmic rays

Robustness of a circuitNoise marginsSensitivity to noise

Page 25: EE241 - Spring 2011

25

Clock Feedthrough

VDD

MpOut

ACL

Ca

MaX

2.5V

h t

49

Me

B Ca

Cb

Mb overshoot

out

Miller and Back-gate Coupling

50Courtesy of IEEE Press, New York. 2000

Page 26: EE241 - Spring 2011

26

Capacitive Coupling

51Courtesy of IEEE Press, New York. 2000

Capacitive Coupling

Dynamic node: Static node:

52Courtesy of IEEE Press, New York. 2000

Page 27: EE241 - Spring 2011

27

Capacitive Coupling

Lateral coupling: Shielding

53Courtesy of IEEE Press, New York. 2000

Minority Charge Injection

54Courtesy of IEEE Press, New York. 2000

Page 28: EE241 - Spring 2011

28

Supply Noise

55Courtesy of IEEE Press, New York. 2000

Next Lecture

Design in domino logic

56