EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000...

24
1 EE241 Spring 2011 EE241 - Spring 2011 Advanced Digital Integrated Circuits Lecture 19: Managing Leakage Announcements Quiz #3 next Wednesday This and next lecture until 4pm Reading: Chapter 8, 10, from Rabaey LPDE Plan until the end of semester: 2 Plan until the end of semester: One more homework and two quizzes Final: April 28, in class Project presentations: Wednesday, May 4, 2pm

Transcript of EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000...

Page 1: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

1

EE241 Spring 2011EE241 - Spring 2011Advanced Digital Integrated Circuits

Lecture 19: Managing Leakage

Announcements

Quiz #3 next Wednesday

This and next lecture until 4pm

Reading: Chapter 8, 10, from Rabaey LPDE

Plan until the end of semester:

2

Plan until the end of semester:One more homework and two quizzes

Final: April 28, in class

Project presentations: Wednesday, May 4, 2pm

Page 2: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

2

Outline

Last lectureDVS

Clock gating

This lectureLeakage management

Power gating

Back bias

3

Managing LeakageManaging Leakage

Page 3: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

3

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

5

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDD

Variable VTh

+ Input control

+ Variable VTh

Stack Effect

Reduction (in 0.13μ):

6Narendra, ISLPED’01

Page 4: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

4

Stack Forcing

7

Tradeoffs:• W/2 – ¼ of drive current, same loading• 2W – 4x loading, same drive current

Narendra, ISLPED’01

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

8

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDDVariable VTh

+ Input control

+ Variable VTh

Page 5: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

5

Input Control

9

May take many cycles to force the desired state in a block

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

10

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDDVariable VTh

+ Input control

+ Variable VTh

Page 6: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

6

Dynamic Sleep Transistor

VCCON: gate

Active modePMOS forward body bias

...

CC

Virtual VCC

ON: gateoverdrive

Noise on virtual supply

Dual-VT

core

11

ON: gateoverdrive VSS

Virtual VSS

Courtesy of J. Tschanz, Intel (ISSCC’03)

Dynamic Sleep Transistor

VCCOFF: gate

PMOS reverse body biasIdle mode

...

Virtual VCCunderdrive

Virtual supply collapse

12

VSS

Virtual VSSOFF: gateunderdrive

Courtesy of J. Tschanz, Intel (ISSCC’03)

Page 7: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

7

How to Size the Sleep Transistor?

Circuits in active mode see the sleep transistor as extra power line resistance

The wider the sleep transistor the betterThe wider the sleep transistor, the better

Wide sleep transistors cost areaMinimize the size of the sleep transistor for given ripple (e.g. 5%)

Need to find the worst case vectorSleep transistor is not for free – it will degrade the performance in active mode

13

performance in active modeCharging and discharging the virtual rails costs energy

Sleep Transistor

High-VTH transistor has to be very large for low resistancein linear region. gLow-VTH transistor needs much less areafor the same resistance.

14Courtesy: R. Krishnamurthy, Intel

Page 8: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

8

Sleep Transistor Layout

ALUSleep

transistor cells

Area overhead

PMOS 6%

15

PMOS 6%

NMOS 3%

Tschanz, ISSCC’03

Sleep in Standard Cells

16Uvieghara, ISSCC’04

Page 9: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

9

Sleep Transistor Grid

No sleep transistor PMOS & NMOSsleep transistors

Virtual VCC Virtual VSS

VCC M4VCC M4

sleep transistors

17

VSSM4VSS

M4

M3 M3 M3 M3Tschanz, ISSCC’03

Preserving State

Virtual supply collapse in sleep mode will cause the loss of state in registers

Putting the registers at nominal VDD would preserve the state

These registers leak

The second supply needs to be routed as well

Can lower VDD in sleep

18

Some impact on robustness, noise and SEU immunity

State preservation and recovery

Page 10: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

10

Register Design

SLEEP High VT

SLEEP High VT

SLEEP High VT

SLEEP High VT

19

High VT

CLK

High VT

[Mutoh95]

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

20

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDDVariable VTh

+ Input control

+ Variable VTh

Page 11: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

11

Shared-Well Dual Supply

wer

[mW

]

40

50

60

-42%

[pJ]

Room temp.

600

700

800

Single-supply

Dual supply

1.16GHz

VDDL=1.4VEnergy:-25.3%

In 180nm

VDDL [V]

Leak

age

Pow

0

10

20

30

40

1.0 1.2 1.4 1.6 1.8 2.0

VDDHDomain

VDDLDomain

VDDH

Ener

gy [

TCYCLE [ns]

200

300

400

500

0.6 0.8 1.0 1.2 1.4 1.6

pp y(VDDH=1.8V)Delay :+2.8%

VDDL=1.2VEnergy:-33.3% Delay :+8.3%

21VDDH circuit

VDDL

VSS

VDDL circuit

Shimazaki, ISSCC’03

Power /Energy Optimization SpaceConstant Throughput/Latency Variable Throughput/Latency

Energy Design Time Sleep Mode Run TimeEnergy Design Time Sleep Mode Run Time

Active

Logic design

Scaled VDD

Trans. sizing

Multi-VDD

Clock gatingDFS, DVS

St k ff t

22

Leakage

Stack effects

Trans sizing

Scaling VDD

+ Multi-VTh

Sleep T’s

Multi-VDDVariable VTh

+ Input control

+ Variable VTh

Page 12: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

12

Dynamic Body Bias

Similar concept to dynamic voltage scalingControl loop adjusts the substrate bias to meet the timingtiming

Can be used just as runtime/sleep

Limited range of threshold adjustments (<100mV)Limited leakage reduction (<10x)No delay penalty

C i d b f d bi

23

Can increase speed by forward bias

Energy cost of charging/discharging the substrate capacitance(but doesn’t need a regulator)

Dynamic Body Bias

24

Page 13: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

13

Dynamic Body Bias

450mVFBB

VCC

PMOSbody

PMOSForward body bias

Active mode

... ...

450mVFBB

VSS

body

NMOSbody

bias

NMOSbias

PMOSbodyVHIGH

Forward body bias (FBB)

Local VCC tracking

Idle mode

Dual-VT

core

25

PMOSbias

... ...NMOS

bias

500mVRBB

500mVRBB

VCC

VSS

NMOSbody

VLOW

Reverse body bias (RBB)

Triple well needed

Tschanz, ISSCC’03

Body Bias Layout

Sleep transistor LBGsALU core LBGs

ALUNumber of ALU core LBGs

30

Number of sleep transistor LBGs

10

PMOS device width 13mm

U

26

Area overhead 8%

Sleep transistor LBGs

ALU core LBGs

Page 14: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

14

1

Leakage Power Savings vs. Decap

Virtual VCC1.32V, 75°Cwer

0 2

0.4

0.6

0.8

1.32V75°C

Overhead: charging &

Dual-VTcore

lized

leak

age

po

in id

le m

od

e

40%

Low-leakage 133nF decap on

virtual VCC

No decap on virtual VCC

27

0

0.2

0.01 1 100 10000

Minimize capacitance on virtual VCC

g gdischarging of virtual VCC

capacitance

Idle time

10ns 1s 100s 10ms10sNo

rmal 90%

Decoupling Capacitor Placement

Longertime

OxideleakageDual-VT

core

Reducedleakage

timeconstant

Dual-VTcore

28

Decap on full supply Decap on virtual supply

Performance

Convergence time

Oxide leakage savings

Page 15: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

15

20%

Total Active Power Savings(Fixed activity: = 0.05)

0.5 5 50 500 5000 50000

Number of consecutive active cycles (TON)

5%

10%

15%

20%

ota

l po

we

r sa

vin

gs

Body bias (1.28V): active: FBB, idle: ZBB

PMOS sleep transistor (1.32V)

otal

pow

er s

avin

gs Max 18%

Max 8%

29

0%

5%

10 100 1000 10000 100000 1000000Number of idle cycles

To

Reference: 450mV FBB to core with clock gating, 1.28V, 4.05GHz, 75°C

Number of consecutive idle cycles (TOFF)

Power savings for TOFF > ~100 idle cycles

To

Techniques Summary

80

100

Standby supply reduction3 4 l k d ti

Reduced VDD

20

40

60

Il ea

k(n

orm

aliz

ed

)

Sleep transistor - up to~25x leakage reduction

~3-4x leakage reduction

Reverse bias~3x leakage

reduction

Standby supply + reverse bias~10x leakage reduction

Off-transistorload line

30

0

20

0 0.2 0.4 0.6 0.8 1

VDD [V]

Page 16: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

16

Body Biasing and Variations

Body biasing with a local control loop can be used to lower the impact of process variations

Used to limit die-to-die and within-die variations

31

Normalized Delay vs VDD & VTH

1 8VDD =1.0 V

ΔVTH =

1.5 V

3.0 V

1 0

1.4

1.8

mal

ized

Del

ay ±0.15V

±0.05V

ΔVTH =

32

Sakurai, Kuroda

VTH (V)

0 0.2 0.4 0.7 1

5.0 V

0.6

1.0

No

rm

0.5

Page 17: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

17

Self-Adjusting Threshold-Voltage Scheme (SATS)

33

Substrate Biasing

34Tschanz, JSSC 11/02

Page 18: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

18

Effectiveness of Substrate Bias

Die-to-die variations

35

Effectiveness of Substrate Bias

Within-die variations

36

Page 19: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

19

Dynamic Voltage Scaled MicroprocessorExternal VDD 3.3V±10% Internal VDDL 0.8V~2.9V ±5%

U L i

VS

mW

) 300

TX3900

User Logic PLL

ow

er D

issi

pat

ion

(m

100

200

TheoryMeasurement

37

VTP

Operating Frequency (MHz)

00 10 20 30 40

Courtesy: Prof. Kuroda

Adapting VDD and VTH

38

Miyazaki, ISSCC’02

Page 20: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

20

Adapting VDD and VTH

39

Miyazaki, ISSCC’02

Optimal VDD, VTh

Adjusting VDD, VTh trades of energy and delay

We studied energy-limited designThere are alternate ways for optimizing energy and delay together

E.g. energy-delay product (EDP)

Or EnDm, n,m > 1

40

Page 21: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

21

Optimal EDP Contours

41Gonzalez, JSSC 8/97

Topology Inverter Adder Decoder

(ELk/ESw)ref 0.1% 1% 10%Reference Design:Dref (Vdd

max,Vthref)

Sizing, Supply, Threshold Optimization

Large variation in optimal circuit parameters Vddopt, Vth

opt, wopt

Vddmax Vth

max

42Technology parameters (Vdd

max, Vthref) rarely optimal

Vddmin Vth

min

Page 22: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

22

Energy efficient curvef (W,Vdd,Vth)

gy

(Ere

f)Sensitivity W Vdd Vth

(Dref,Eref) 1.5 0.2

(D E ) 1

Result: E-D Tradeoff in an Adder

ReferenceDesign(Dref,Eref)

(Dmin,Eref)

En

erg (Dref,Emin) 1

(Dmin,Eref) 22 16 22

-80%

-40%

80% of energy savedwithout delay penalty

43Delay (Dref)

(Dref,Emin) 40% delay improvement without energy penalty

Energy-constrained delay

Active power2

DDact fCVP

f = 1/LDtp

Leakage power

Eli i t i bl (V ) d fi d P (V )

DDS

VV

leak VeIPDDTh

0

44

Eliminate one variable(VTh) and find Pmin(VDD)

Nose, ASP-DAC’00

Page 23: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

23

Large (ELk/ESw)opt

Flat EOp minimum

T l d d t

Minimum energy: ESw = 2ELk

0.8

1O

pef

Vthref-180mV

0 81Vmax

2

ln

Lk Sw optd

avg

E EL

K

Topology dependent

0.2

0.4

0.6

EO

p /

nom

inal

EOre

nominalparallelpipeline

0.81Vdd

Vthref-95mV

0.57Vddmax

Vthref-140mV

0.52Vddmax

45Optimal designs have high leakage (ELk/ESw ≈ 0.5)

10-2

10-1

100

101

0

ELeakage

/ESwitching

pipeline

Subthreshold Optimum

f = 30kHz Minimum is independent of VT

46

Minimum is independent of VT

Calhoun, JSSC 9/05

Page 24: EE241 - Spring 2011bwrcs.eecs.berkeley.edu/Classes/icdesign/ee241_s11/... · 0.01 1 100 10000 Minimize capacitance on virtual VCC gg discharging ... Standby suppyl + reverse bai s

24

Next Lecture

Back to design for performance

47