CMOS Process Steps

34
Lundstrom EE-612 F06 1 EE-612: Lecture 22: CMOS Process Steps Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 www.nanohub.org NCN

description

A good summary of CMOS process steps

Transcript of CMOS Process Steps

Page 1: CMOS Process Steps

Lundstrom EE-612 F06 1

EE-612:Lecture 22:

CMOS Process Steps

Mark LundstromElectrical and Computer Engineering

Purdue UniversityWest Lafayette, IN USA

Fall 2006

www.nanohub.orgNCN

Page 2: CMOS Process Steps

Lundstrom EE-612 F06 2

outline

1) Unit Process Operations

2) Process Variations

Page 3: CMOS Process Steps

Lundstrom EE-612 F06 3

unit process operations

1) Oxidation

2) Diffusion

3) Ion Implantation

4) RTA/RTP

5) Chemical Vapor Deposition

6) Lithography

7) Etching

8) Metalization

9) Well Structures

10) Isolation

11) Source / Drain structures

Page 4: CMOS Process Steps

Lundstrom EE-612 F06 4

useful references

1) J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology, Fundamentals, Practice, and Modeling, Prentice Hall, Upper Saddle River, NJ, 2000.

2) S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd Ed., Oxford Univ. Press, New York, 2001.

Page 5: CMOS Process Steps

Lundstrom EE-612 F06 5

oxidation

O2 or H2O+carrier gas

fused quartz furnace tube T = 800 - 1100 oC

heater

wafers

Si + O2 → SiO2

Si+ H2O → SiO2

(dry)(wet)

Page 6: CMOS Process Steps

Lundstrom EE-612 F06 6

oxidation and doping

C

x

phophorous m > 1

m =CSi

CSiO2

boron m < 1

Page 7: CMOS Process Steps

Lundstrom EE-612 F06 7

local oxidation

Si

Si3N4

SiO2

Page 8: CMOS Process Steps

Lundstrom EE-612 F06 8

local oxidation (LOCOS)

Si

Si3N4

SiO2

'bird's beak'

‘fieldoxide’

Page 9: CMOS Process Steps

Lundstrom EE-612 F06 9

constant source diffusion

CS

x

dopant-containing

gas (e.g. POCl3)

C

time

C(x) = CS erfc x / 2 Dt( )Q = C x,t( )

0

∫ dx=2CS Dt π

Page 10: CMOS Process Steps

Lundstrom EE-612 F06 10

Limited source diffusion

CS

x

t = 0

‘predep’

C

time

C x, t( )= Q / πDt( )exp − x / 2 Dt( )2⎡⎣⎢

⎤⎦⎥

Page 11: CMOS Process Steps

Lundstrom EE-612 F06 11

diffusion

Si Si Si

Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

substitutional interstitialcy interstitial

“oxidation enhanced diffusion’D(T ) = D0e−EA /kBT

Page 12: CMOS Process Steps

Lundstrom EE-612 F06 12

ion implantation

•B

F = Qrυ ×

rB

magnet

ion source

acceleration

deflection

waf

er

energetic ions bombard silicon wafer

I

Page 13: CMOS Process Steps

Lundstrom EE-612 F06 13

ion implantation

Si

RP (E)

ΔRP (E)

implant damage (anneal)

N x( )= Np exp − x − Rp( )2 2ΔRp2⎡

⎣⎤⎦

Q = 2πNpΔRp

Page 14: CMOS Process Steps

Lundstrom EE-612 F06 14

ion implantation (ii)

10 100 1000

Pro

jec t

ed ra

nge

( μm

)

Acceleration energy (keV)

0.01

0.1

1.0 B

As

Page 15: CMOS Process Steps

Lundstrom EE-612 F06 15

channeling

x

C x( )

tilted 3 deg

RP

ΔRP

Page 16: CMOS Process Steps

Lundstrom EE-612 F06 16

rapid thermal annealing

lampsreflector

quartz window

wafer

gas inlet

thermal budget

Dt

Page 17: CMOS Process Steps

Lundstrom EE-612 F06 17

chemical vapor deposition

wafer

Dt

susceptorgas inlet

gas exhaust

reaction chamber

2SiH4 + 4NH3 → Si3N4 +12H2

SiH4 → Si+2H2

SiH4 +O2 → SiO2 +2H2

silicon nitridepoly silicon

silicon dioxide

Page 18: CMOS Process Steps

Lundstrom EE-612 F06 18

plasma CVD / etching

Dt

gas inlet

gas exhaust

heater

wafer

RF power in

lower temperature reduces thermal budget

Page 19: CMOS Process Steps

Lundstrom EE-612 F06 19

lithography

optical source

wavelength, λ

shutter

mask

resist

wafer

expose, develop, etch

lens

contact or

proximity

Page 20: CMOS Process Steps

Lundstrom EE-612 F06 20

projection printing

UV source

lens 1 lens 2 wafermask

α

Page 21: CMOS Process Steps

Lundstrom EE-612 F06 21

registration errors

EE

misalignment

E EE EE EE EE

run out

Page 22: CMOS Process Steps

Lundstrom EE-612 F06 22

phase shift lithography

electric field at mask

conventional mask phase shift mask

intensity at wafer

electric field at mask

intensity at wafer

Page 23: CMOS Process Steps

Lundstrom EE-612 F06 23

pattern transfer

resist:

optically sensitive polymer which, when exposed to UV changes its solubility in specific chemicals

wafer

wafer

wafer

negative resist(less soluble after exposure)

positive resist(more soluble after exposure)

Page 24: CMOS Process Steps

Lundstrom EE-612 F06 24

etching

undercut

wafer

wet chemical etching

(isotropic)

dry etching (plasma or reactive ion etching - RIE)

(anisotropic)

wafer

chemicals react with underlying material,

but not resist

ionized gases react with underlying material, but not

resist

Page 25: CMOS Process Steps

Lundstrom EE-612 F06 25

pattern transfer (ii)

mask

lithography bias

chrome

resist

LDrawn

etch bias

LGate(physical)

Page 26: CMOS Process Steps

Lundstrom EE-612 F06 26

metalization

www.itrs.net2005 Edition

Tungsten (W) plugsfor first layermetal depCMP

Page 27: CMOS Process Steps

Lundstrom EE-612 F06 27

outline

1) Unit Process Operations

2) Process Variations

Page 28: CMOS Process Steps

Lundstrom EE-612 F06 28

discrete doping effects

N+ N+

P (NA cm-3)

V = W × L × xjexample:L = 50 nmW = 100 nmxj = 25 nmNA = 1018 cm-3

NTOT = 125

Number of dopants in the critical volume is a statistical quantity

Page 29: CMOS Process Steps

Lundstrom EE-612 F06 29

discrete doping effects (ii)

3D transport leads to inhomogeneous conduction(see Wong and Taur, IEDM, 1993, p. 705)

Effects:

1) σVT (10’s of mV)

2) lower avg. VT (10’s of mV)

3) asymmetry in ID

source drain

Page 30: CMOS Process Steps

Lundstrom EE-612 F06 30

discrete doping effects (iii)

(simulations from A. Asenov group, Univ. of Glasgow)

35 nm MOSFET

AFM measurements, Fujitsu

Page 31: CMOS Process Steps

Lundstrom EE-612 F06 31

statistical variability

Line edge roughness

discrete dopants

From A. Asenov, Univ. of Glasgow

Page 32: CMOS Process Steps

Lundstrom EE-612 F06 32

variability is becoming a major issue

G. Declerck, Keynote talk, VLSI Technol. Symp. 2005

Page 33: CMOS Process Steps

Lundstrom EE-612 F06 33

outline

1) Unit Process Operations

2) Process Variations

For a basic, CMOS process flow for an STI(shallow trench isolation process), see:http://www.rit.edu/~lffeee/AdvCmos2003.pdf

Page 34: CMOS Process Steps

Lundstrom EE-612 F06 34

CMOS process flow

For a basic, CMOS process flow for an STI

(shallow trench isolation process), see:

http://www.rit.edu/~lffeee/AdvCmos2003.pdf

The author is indebted to Dr. Lynn Fuller of Rochester Institute of Technology for making these materials available. What follows is a condensed version of a more complete presentation by Dr. Fuller. I regret any errors that I may have introduced by shortening these materials. -Mark Lundstrom 10/19/06