Download - Virtual Flow Metering principle Metering Maintenance and ...€¦ · 2 Virtual flow metering vs «physical metering» Single phase flow metering Multiphase flow metering DP 0.4 m

Transcript
  • 0

    Virtual FlowMetering

    Characterizing virtual flow metering

    Metering principle

    Maintenance and tuning

    Applications areas

  • 1

    Virtual FlowMetering

    Characterizing virtual flow metering

    Metering principle

    Maintenance and tuning

    Applications areas

  • 2

    Virtual flow metering vs «physical metering»

    Single phase flow metering Multiphase flow metering

    DP

    0.4 m

    𝑄 = 𝑓(𝐷𝑃)

    Compact Compact

    𝑄

    DP

    P/T

    x

    x

    2.0 m

    𝑄 = 𝑓(𝐷𝑃, 𝑃, 𝑇, 𝑥𝑖)

    𝑄

    Virtual flow metering

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 3

    Virtual flow metering – key characteristics

    • Distributed instrumentation

    • Dependent on instrument and system sensitivity to

    changes in flow and phase fractions

    • Solution range; pure data driven, thermo-hydraulic

    modelling, or hybrids

    • Not boxable, therefore «Factory calibration» not

    possible

    • Dependent on tuning/calibration to extend «calibrated

    range» and adapt to changing operating conditions

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

  • 4

    Virtual FlowMetering

    Characterizing virtual flow metering

    Metering principle

    Maintenance and tuning

    Applications areas

  • 5

    Virtual flow metering – Pressure drop in well

    𝑃1 − 𝑃2

    Increasing pressure drop

    (hydrostatic) from gas-liquid

    slip at low flow velocity

    Increasing pressure drop from

    higher flow velocity / frictional

    pressure drop

    Figure reference:

    M. Banowski, Prof. U. Hampel, E. Krepper, M. Beyer, D. Lucas (2018).

    𝑄 liquid (constant GOR and WC)

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 6

    Virtual flow metering – Temperature drop in well

    𝑇1 − 𝑇2

    𝑄 liquid (constant GOR and WC)

    Long temperature transients

    in wells due to formation

    warm-up

    Steady state

    Start-upP/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 7

    Virtual flow metering – Pressure drop over choke

    𝑃2 − 𝑃3

    Critical/choked flow:

    Flow velocity = velocity of sound

    𝑄 liquid (constant GOR and WC)

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 8

    Virtual flow metering – Estimating phase fractions

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 9

    Virtual FlowMetering

    Characterizing virtual flow metering

    Metering principle

    Maintenance and tuning

    Applications areas

  • 10

    Virtual flow metering – Well testing

    𝑄 liquid

    Test alternatives:A. Test separator test

    B. Deduction test

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 11

    Virtual flow metering - Tuning pressure drop in well

    𝑃1 − 𝑃2

    𝑄 liquid (constant GOR and WC)

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 12

    Virtual flow metering - Tuning temperature drop in well

    𝑇1 − 𝑇2

    𝑄 liquid (constant GOR and WC)

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 13

    Virtual flow metering - Tuning pressure drop over choke

    𝑃2 − 𝑃3

    𝑄 liquid (constant GOR and WC)

    Choke Cv curve:

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 14

    Virtual flow metering – Uncertainty drivers

    • Installed instrument uncertainty vs measured value

    • Fluid properties / PVT description

    • Quality of test / reference data

    • Instrument sensitivity to changes in flow and phase

    fractions

    • Outdated assumptions, e.g. WC or GOR

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 15

    Virtual FlowMetering

    Characterizing virtual flow metering

    Metering principle

    Maintenance and tuning

    Applications areas

  • 16

    Virtual flow metering – Main application areas

    A. Establish flow rates without dedicated physical

    flow meters

    B. Provide back-up for physical flow meters

    P/T

    P/T P/T

    1 0

    00

    -3

    00

    0 m

    5.0 m

    𝑄 = 𝑓(𝑃1, 𝑇1, 𝑃2, 𝑇2, 𝑃3, 𝑇3, 𝐶ℎ𝑘𝑝𝑜𝑠, . . 𝑥𝑖)

    Distributed

    𝑄

    Choke

    Pos.

    1

    2 3

  • 17

    Virtual FlowMetering

    Question?