Supplementary Materials for -...

14
www.sciencemag.org/cgi/content/full/science.aaa4747/DC1 Supplementary Materials for The shape and structure of cometary nuclei as a result of low-velocity accretion M. Jutzi* and E. Asphaug *Corresponding author. E-mail: [email protected] Published 28 May 2015 on Science Express DOI: 10.1126/science.aaa4747 This PDF file includes: Materials and Methods Figs. S1 to S7 Table S1 Full Reference List Captions for Data S1 to S7 Other Supplementary Material for this manuscript includes the following: (available at www.sciencemag.org/cgi/content/full/science.aaa4747/DC1) Data S1 to S7 as zipped archives

Transcript of Supplementary Materials for -...

www.sciencemag.org/cgi/content/full/science.aaa4747/DC1

Supplementary Materials for

The shape and structure of cometary nuclei as a result of low-velocity

accretion

M. Jutzi* and E. Asphaug

*Corresponding author. E-mail: [email protected]

Published 28 May 2015 on Science Express

DOI: 10.1126/science.aaa4747

This PDF file includes:

Materials and Methods

Figs. S1 to S7

Table S1

Full Reference List

Captions for Data S1 to S7

Other Supplementary Material for this manuscript includes the following:

(available at www.sciencemag.org/cgi/content/full/science.aaa4747/DC1)

Data S1 to S7 as zipped archives

Materials and Methods

We use a smooth particle hydrodynamics (SPH) impact code (20-22). This parallel (35) code includes

self-gravity and is specially suited to modeling planetesimal collisions. To avoid numerical rotational

instabilities, the scheme suggested by Speith (2006) is used (36).

A pressure dependent shear strength (friction) is included by using a standard Drucker-Prager yield

criterion (22). As shown in (22,26), granular flow problems (of cohesionless material) are well

reproduced using this method.

For the simulations with cohesion, we use Y0 > 0 and include a tensile fracture model (20), using

parameters that lead to an average tensile strength of ~ 100 Pa. Porosity is modeled using a P-alpha

model (21) with a simple quadratic crush curve and parameters Pe, Ps as indicated in Table S1. Note

that σc = Ps/2 is used as an estimate of the compressive strength. The initial density of both target and

impactor is ~ 0.5 g/cm3.

We use a modified Tillotson equation of state (EOS; c.f. 37) with parameters for water ice. It is

adequate for modelling the meters-per-second collisions considered here, where the most important

response is the solid compressibility. As long as there is porosity, the compressibility is limited not by

the EOS but by the crush curve of the P-alpha model; as noted, we find that despite the substantial

deformation, only a minor volume fraction of the colliding material is substantially compactified, so a

detailed EOS is not important.

The elastic wave speed ce is not well represented by the EOS in any case, for a weak aggregate body.

For compact geologic ice ce~1 km/s is typical, and according to the Tillotson EOS parameters, ce~3

km/s. Porous ice can have ce~0.1 km/s. So, we apply a reduced bulk modulus (leading term in the

Tillotson EOS; see Table S1), which leads to more realistic wave speeds. The approach has the

additional major advantage that the time-steps becomes large enough to carry out the simulations over

many dynamical timescales. Note that the ce >> vimp still applies for the impact velocities considered in

this study, so the materials do not artificially shock up. A similar approach was applied by (38) to study

planetesimal collisions.

The relevant material parameters used for the simulations are indicated in Table S1.

Both the target and the impactor are evolved to hydrostatic equilibrium in the simulation before the

collision. Our study does not include initial rotation. We use Nt = 4x105 particles for the target and the

same number per unit mass for the impactor for our nominal simulations. The cases with cohesion were

studied using a lower resolution (Nt ~ 1x105).

Two cometesimals are separated by a distance rinit = 3(RT + RP), and an initial relative velocity vinit is

applied to achieve a specific impact velocity vimp and impact angle θ at contact. Initial velocities are

varied so that vesc < vimp < 2 vesc where vesc = [2G(MT+MP)/(RT+RP)]0.5

and MP and MT are the colliding

(spherical) masses of radii RT > RP, and G is the gravitational constant.

The simulations are carried out up to a few days of simulation time, depending on the type of collision

result. The self-gravity timescale is hours, and the final rotation period is around twice that in typical

simulations. While the final configurations in the splat type collisions are reached relatively quickly

(several hours), the bi-loped forming collisions take much longer to reach the final state (Figure 1).

Overall, ~100 simulations were performed (see Figure 2 and Figures S2-S6). Each simulation takes one

to several weeks to complete, depending on the collision type.

Figure S1: Estimation of the critical radius Rc at which the overburden pressure leads to compaction,

plotted as a function of the radius Rt of the body. The layers below Rc are significantly compacted. In

this simplified model, Rc is approximately computed for a given object with radius Rt by equating the

crushing pressure to the overburden pressure at the Radius Rc: σc = Poverburden(R=Rc), assuming a

homogenous density of ρ = 500 kg/m3. This is for dust-aggregate compaction pressures, many orders of

magnitude smaller than previously considered (32).

Figure S2: Results for Mt/Mp = 4 and cohesionless bodies.

Figure S3: Results for Mt/Mp = 8 and cohesionless bodies.

Figure S4: Results for Mt/Mp = 2 and bodies with cohesion.

Figure S5: Results for Mt/Mp = 4 and bodies with cohesion.

Figure S6: Results for Mt/Mp = 8 and bodies with cohesion.

Figure S7: Same run as shown in Figure 4, right (with tensile strength). Materials whose prescribed

material tensile strength was exceeded are plotted here, with dark being undamaged regions. Two

different viewing angles are shown.

Extended Data Figure 6: Same run as shown in Figure 3, right (with cohesion). Materials whose pre-

scribed material cohesion was exceeded are plotted here, with dark being undamaged regions. Two differ-

ent viewing angles are shown.

type Pe (Pa) Pe (Pa) ρs0 (kg/m3) ρ0 (kg/m

3) α0 A (Pa) μ Y0 (Pa) YT (Pa)

No cohesion 101 10

3 910 440 2.08 2.67 10

4 0.55 0 0

With cohesion 102 10

4 910 440 2.08 2.67 10

4 0.55 10

3 10

2

Table S1: Material parameters used. Crush curve parameters Pe and Ps (c.f. 21), density of matrix

material ρs0, initial bulk density ρ0, initial distention α0, bulk modulus A, friction coefficient μ, cohesion

Y0, average tensile strength YT.

Captions for Supplementary Data Files:

Data S1 to S6 (same caption for files named aaa4747_SupportingFile_Other_seq1,

aaa4747_SupportingFile_Other_seq2, aaa4747_SupportingFile_Other_seq3,

aaa4747_SupportingFile_Other_seq4, aaa4747_SupportingFile_Other_seq5,

aaa4747_SupportingFile_Other_seq6):

SPH data for simulations presented in Figure 2. The file names indicate the velocity (vimp/vesc),

impact angle and mass ratio, respectively. The first 3 columns correspond to the coordinates of

the SPH particles (in cm), the last column is the body number (1: target, 2: impactor). The single

.gz files are ascii files compressed using gzip.

Data S7 (file named aaa4747_SupportingFile_Other_seq7_v2.gz):

SPH data for simulations presented in Figure 3. The first 3 columns correspond to the

coordinates of the SPH particles (in cm), the last column is the body number (1: target, 2: first

impactor, 3: second impactor). The single .gz files are ascii files compressed using gzip.

References and Notes

1. B. Donn, D. Hughes, “A fractal model of a cometary nucleus formed by random accretion.” in

Proceedings of the 20th ESLAB Symposium on the Exploration of Halley's Comet

(European Space Agency, 1986) vol. 3, pp. 523–524.

2. P. R. Weissman, Are cometary nuclei primordial rubble piles? Nature 320, 242–244 (1986).

doi:10.1038/320242a0

3. S. J. Weidenschilling, The origin of comets in the solar nebula: A unified model. Icarus 127,

290–306 (1997). doi:10.1006/icar.1997.5712

4. D. Durda, S. A. Stern, Collision rates in the present-day Kuiper belt and Centaur regions:

Applications to surface activation and modification on comets, Kuiper belt objects,

Centaurs, and Pluto–Charon. Icarus 145, 220–229 (2000). doi:10.1006/icar.1999.6333

5. P. R. Weissman, E. Asphaug, S. C. Lowry,. “Structure and density of cometary nuclei,” in

Comets II, M. C. Festou, H. U. Keller, H. A. Weaver, Eds. (Univ. of Arizona Press,

Tucson, 2004), pp. 337–357.

6. M. J. Mumma, P. R. Weissman, S. A. Stern, “Comets and the origin of the solar system -

Reading the Rosetta Stone.” in Protostars and Planets III (Univ. of Arizona Press,

Tucson, AZ, 1993), pp. 1177–1252.

7. H. F. Levison, M. J. Duncan, L. Dones, B. J. Gladman, The scattered disk as a source of

Halley-type comets. Icarus 184, 619–633 (2006). doi:10.1016/j.icarus.2006.05.008

8. H. E. Schlichting, C. I. Fuentes, D. E. Trilling, Initial planetesimal sizes and the size

distribution of small Kuiper belt objects. Astron. J. 146, 36 (2013). doi:10.1088/0004-

6256/146/2/36

9. A. Morbidelli, W. F. Bottke, D. Nesvorný, H. F. Levison, Asteroids were born big. Icarus 204,

558–573 (2009). doi:10.1016/j.icarus.2009.07.011

10. J. N. Cuzzi, R. C. Hogan, W. F. Bottke, Towards initial mass functions for asteroids and

Kuiper belt objects. Icarus 208, 518–538 (2010). doi:10.1016/j.icarus.2010.03.005

11. R. M. Canup, On a giant impact origin of Charon, Nix, and Hydra. Astron. J. 141, 35 (2010).

doi:10.1088/0004-6256/141/2/35

12. Z. M. Leinhardt, R. A. Marcus, S. T. Stewart, The formation of the collisional family around

the dwarf planet Haumea. Astrophys. J. 714, 1789–1799 (2010). doi:10.1088/0004-

637X/714/2/1789

13. E. Asphaug, W. Benz, Density of comet Shoemaker-Levy 9 deduced by modelling breakup

of the parent “rubble pile”. Nature 370, 120–124 (1994). doi:10.1038/370120a0

14. H. Boehnhardt, “Split comets,” in Comets II (Univ. of Arizona Press, 2004), pp. 301–316.

15. M. J. S. Belton, Cometary activity, active areas, and a mechanism for collimated outflows on

1P, 9P, 19P, and 81P. Icarus 210, 881–897 (2010). doi:10.1016/j.icarus.2010.07.007

16. M. F. A’Hearn, Comets as building blocks. Annu. Rev. Astron. Astrophys. 49, 281–299

(2011). doi:10.1146/annurev-astro-081710-102506

17. H. Sierks, C. Barbieri, P. L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H. U. Keller, J.

Agarwal, M. F. A’Hearn, F. Angrilli, A. T. Auger, M. A. Barucci, J. L. Bertaux, I.

Bertini, S. Besse, D. Bodewits, C. Capanna, G. Cremonese, V. Da Deppo, B. Davidsson,

S. Debei, M. De Cecco, F. Ferri, S. Fornasier, M. Fulle, R. Gaskell, L. Giacomini, O.

Groussin, P. Gutierrez-Marques, P. J. Gutiérrez, C. Güttler, N. Hoekzema, S. F. Hviid,

W. H. Ip, L. Jorda, J. Knollenberg, G. Kovacs, J. R. Kramm, E. Kührt, M. Küppers, F. La

Forgia, L. M. Lara, M. Lazzarin, C. Leyrat, J. J. Lopez Moreno, S. Magrin, S. Marchi, F.

Marzari, M. Massironi, H. Michalik, R. Moissl, S. Mottola, G. Naletto, N. Oklay, M.

Pajola, M. Pertile, F. Preusker, L. Sabau, F. Scholten, C. Snodgrass, N. Thomas, C.

Tubiana, J. B. Vincent, K. P. Wenzel, M. Zaccariotto, M. Pätzold, On the nucleus

structure and activity of comet 67P/Churyumov-Gerasimenko. Science 347, aaa1044

(2015). Medline doi:10.1126/science.aaa1044

18. M. J. S. Belton, P. Thomas, J. Veverka, P. Schultz, M. F. A’Hearn, L. Feaga, T. Farnham, O.

Groussin, J.-Y. Li, C. Lisse, L. McFadden, J. Sunshine, K. J. Meech, W. A. Delamere, J.

Kissel, The internal structure of Jupiter family cometary nuclei from Deep Impact

observations: The “talps” or “layered pile” model. Icarus 187, 332–344 (2007).

doi:10.1016/j.icarus.2006.09.005

19. N. Thomas, H. Sierks, C. Barbieri, P. L. Lamy, R. Rodrigo, H. Rickman, D. Koschny, H. U.

Keller, J. Agarwal, M. F. A’Hearn, F. Angrilli, A. T. Auger, M. A. Barucci, J. L. Bertaux,

I. Bertini, S. Besse, D. Bodewits, G. Cremonese, V. Da Deppo, B. Davidsson, M. De

Cecco, S. Debei, M. R. El-Maarry, F. Ferri, S. Fornasier, M. Fulle, L. Giacomini, O.

Groussin, P. J. Gutierrez, C. Güttler, S. F. Hviid, W. H. Ip, L. Jorda, J. Knollenberg, J. R.

Kramm, E. Kührt, M. Küppers, F. La Forgia, L. M. Lara, M. Lazzarin, J. J. Lopez

Moreno, S. Magrin, S. Marchi, F. Marzari, M. Massironi, H. Michalik, R. Moissl, S.

Mottola, G. Naletto, N. Oklay, M. Pajola, A. Pommerol, F. Preusker, L. Sabau, F.

Scholten, C. Snodgrass, C. Tubiana, J. B. Vincent, K. P. Wenzel, The morphological

diversity of comet 67P/Churyumov-Gerasimenko. Science 347, aaa0440 (2015). Medline

doi:10.1126/science.aaa0440

20. W. Benz, E. Asphaug, Simulations of brittle solids using smooth particle hydrodynamics.

Comput. Phys. Commun. 87, 253–265 (1995). doi:10.1016/0010-4655(94)00176-3

21. M. Jutzi, W. Benz, P. Michel, Numerical simulations of impacts involving porous bodies. I.

implementing sub-resolution porosity in a 3D SPH hydrocode. Icarus 198, 242–255

(2008). doi:10.1016/j.icarus.2008.06.013

22. M. Jutzi, SPH calculations of asteroid disruptions: The role of pressure dependent failure

models. Planet. Space Sci. 107, 3–9 (2015). doi:10.1016/j.pss.2014.09.012

23. Materials and methods are available on Science online.

24. Y. Skorov, J. Blum, Dust release and tensile strength of the non-volatile layer of cometary

nuclei. Icarus 221, 1–52 (2012). doi:10.1016/j.icarus.2012.01.012

25. M. Arakawa, M. Yasui, Impact crater formed on sintered snow surface simulating porous icy

bodies. Icarus 216, 1–9 (2011). doi:10.1016/j.icarus.2011.08.018

26. M. Jutzi, K. Holsapple, K. Wüenneman, P. Michel, “Modeling asteroid collisions and impact

processes.” in Asteroids IV, in press; preprint available

at http://arxiv.org/abs/1502.01844 (2015).

27. P. Tanga, C. Comito, P. Paolicchi, D. Hestroffer, A. Cellino, A. Dell’Oro, D. C. Richardson,

K. J. Walsh, M. Delbo, Rubble-pile reshaping reproduces overall asteroid shapes.

Astrophys. J. 706, L197–L202 (2009). doi:10.1088/0004-637X/706/1/L197

28. Z. Leinhardt, D. C. Richardson, T. Quinn, Direct N-body simulations of rubble pile

collisions. Icarus 146, 133–151 (2000). doi:10.1006/icar.2000.6370

29. E. Asphaug, C. B. Agnor, Q. Williams, Hit-and-run planetary collisions. Nature 439, 155–

160 (2006). Medline doi:10.1038/nature04311

30. M. Jutzi, E. Asphaug, Forming the lunar farside highlands by accretion of a companion

moon. Nature 476, 69–72 (2011). Medline doi:10.1038/nature10289

31. S. Mottola, S. Lowry, C. Snodgrass, P. L. Lamy, I. Toth, A. Rożek, H. Sierks, M. F.

A’Hearn, F. Angrilli, C. Barbieri, M. A. Barucci, J.-L. Bertaux, G. Cremonese, V. Da

Deppo, B. Davidsson, M. De Cecco, S. Debei, S. Fornasier, M. Fulle, O. Groussin, P.

Gutiérrez, S. F. Hviid, W. Ip, L. Jorda, H. U. Keller, J. Knollenberg, D. Koschny, R.

Kramm, E. Kührt, M. Küppers, L. Lara, M. Lazzarin, J. J. Lopez Moreno, F. Marzari, H.

Michalik, G. Naletto, H. Rickman, R. Rodrigo, L. Sabau, N. Thomas, K.-P. Wenzel, J.

Agarwal, I. Bertini, F. Ferri, C. Güttler, S. Magrin, N. Oklay, C. Tubiana, J.-B. Vincent,

The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the

OSIRIS cameras on Rosetta. Astron. Astrophys. 569, L2 (2014). doi:10.1051/0004-

6361/201424590

32. W. B. Durham, W. B. McKinnon, L. A. Stern, Cold compaction of water ice. Geophys. Res.

Lett. 32, L18202 (2005). doi:10.1029/2005GL023484

33. M. J. S. Belton, The size-distribution of scattered disk TNOs from that of JFCs between 0.2

and 15 km effective radius. Icarus 231, 168–182 (2014).

doi:10.1016/j.icarus.2013.12.001

34. E. Asphaug, A. Reufer, Late origin of the Saturn system. Icarus 223, 544–565 (2013).

doi:10.1016/j.icarus.2012.12.009

35. B. Nyffeler, Modelling of Impacts in the Solar System on a Beowulf Cluster (Ph.D. thesis).

University of Bern (2004).

36. R. Speith, thesis, University of Tuebingen (2006).

37. H. J. Melosh, Impact Cratering: A Geological Process (Oxford Univ. Press, Oxford, 1989).

38. E. Asphaug, M. Jutzi, N. Movshovitz, Chondrule formation during planetesimal accretion.

Earth Planet. Sci. Lett. 308, 369–379 (2011). doi:10.1016/j.epsl.2011.06.007