Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics...

17
Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications Dr. Alex Zakhidov Assistant Professor, Physics Department Core faculty at Materials Science, Engineering and Commercialization Program. http://zakhidov.wp.txstate.edu /

Transcript of Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics...

Page 1: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications

Dr. Alex ZakhidovAssistant Professor, Physics Department

Core faculty at Materials Science, Engineering and Commercialization Program.

http://zakhidov.wp.txstate.edu/

Page 2: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Outline

1. Why organic electronics and what is it good for?

2. How to save the world with organic perovskite solar cells?

Page 3: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Organic LightEmitting Diode (OLED)

Organic Thin FilmTransistor (OTFT)

Organic Solar Cell(OSC)

Samsung

Heliatek

Organic Electronics Devices: Smart, Flexible, Cheap!

Other devices: organic lasers, organic memory, organic bio(chemical) sensors

Page 4: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Chemistry

Phys

ics

EngineeringM

aterialsScience

Chemistry

Phys

ics

EngineeringM

aterialsScience

New material synthesis:design, polymers, small molecules

Enabling technologies:Processing, patterning, doping,

encapsulation

Fund

amen

tals

, mec

hani

sm o

f op

erat

ion,

new

dev

ice

conc

epts

“Evolution” of organic electronics

Materials (1960-70)

First devices (late 1980s)

OLEDs Used for mobile displays and TVs

(2012)

Commercial prototypes(2000s)

progress

Materials properties:

Mobility, optical properties,

Structure, film m

orphology

Page 5: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

S.R. Forrest ,Nature 428 (2004)

Organic compounds contain carbon

Page 6: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Organic Semiconductors – π - conjugated organic molecules

linear

aromatic

Page 7: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Organic Semiconductors – π - conjugated organic molecules

In 1977, they discovered that polyacetylene can be oxidized with halogens to produce conduct ing materials f rom either insulat ing or semiconduct ing materials.

+ I

Page 8: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

General Features of Organic Semiconductors

Advantages Challenges

1. Unlimited material design options

2. Varity of structures and morphologies

3. Band gap engineering

4. Light, flexible, inexpensive

5. Electronic and Ionic transport*

6. Disorder: highly localized exciton

1. Device engineering. (Lithography,

Doping, Materials purity, Horizontal and

vertical integration)

2. Stability, Lifetime

3. Organic/Inorganic Interfaces

4. Disorder: highly localized charge carriers

10nm 100nm 1µm

L

10 µm 100 µm 1 mm1 nm

lamellaamorphous microcrystalline crystallinenano-crystalline

*Al.A. Zakhidov, B. Jung, J.D. Slinker, H.D. Abruña, G.G. Malliaras, “A light-emitting memristor”, Organic Electronics 11, 150 (2010).

Page 9: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Electronic properties of Organic Semiconductors

10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105

Amorphous Highly crystalline

Organic semiconductors

a-Si Mobility cm2/Vs

p-Si

CMOS

Graphene

GaAs, InSb, GaN,

InAs

*Y. Yuan, et al Nature Communications 5 (2013).

T. Sekitani, et. al. Nature Materials 9 (2010)

H. Klauk, Chemical Society Reviews, 39 (2010 )

Lens to monitor glucose level in tear

Google

Organic semiconductors

Page 10: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Optical properties of Organic Semiconductors

Molecular pictureSemiconductor picture

Binding energy ~ 1 eVRadius ~ 10 Å

Ground State Ground StateFrenkel exciton WM exciton

kbTroom~26 meV

Binding energy ~ 10 meVRadius ~ 100 Å

Organics: Frenkel excitons Inorganics: Wannier-Mott excitons

εorg<< εinorg

Eex=e2/(ε·rex)

Page 11: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Happy Life…

Page 12: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

How much do we need?

Eco Friendly

In fact can help us to “deal” with global climate change

Page 13: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Why are we not doing this already?

Page 14: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

$$$$

$$$

$$ 20%

$, but….

National Renewable Energy Lab Solar chart

Page 15: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Perovskite structure and processing

CH3NH3I + PbX2

Where X - Br, I or Cl.

Organic precursor

Inorganic precursor

Spin/dip-coating

Vacuum co-deposition

CH3NH3

XPb

ITO/FTOElectron Selective layer

perovskite absorber

Generic perovskite solar cell

Hole Selective layerAg

Perovskite layer top view

Page 16: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Organic Perovskite Solar Cells

Advantages Challenges

1. Efficiency >20%

2. High optical absorption

3. Low recombination rates

4. High carrier transport mobility

5. Tunable band gap

6. Room temperature processing

7. Low-cost, abundant materials

1. Stability

2. Replacement of lead with tin

3. Reliable, scaled-up production

The Energy Pay Back Time EPBT = Einput/Esaved

organic solar cells

Page 17: Physics of Organic Semiconductor Devices: Materials ... › wp.txstate.edu › dist › ...Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov Physics of Organic Semiconductor Devices:

Physics Colloquium 10/07/2015 , Dr. Alex Zakhidov

Take home message