Nanofiber Coupled Nanoplasmonics

101
Nanofiber Coupled Nanoplasmonics Limin Tong State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University, Hangzhou, China KITPC Program “Plasmonic Nanogaps and Circuits” , October 12-30, 2015, Beijing

description

Outline 1. Introduction 2. Nanofiber coupled nanowire plasmonics 3. Nanofiber coupled nanorod plasmonics 4. Conclusion

Transcript of Nanofiber Coupled Nanoplasmonics

Page 1: Nanofiber Coupled Nanoplasmonics

Nanofiber Coupled Nanoplasmonics

Limin Tong State Key Laboratory of Modern Optical Instrumentation

College of Optical Science and EngineeringZhejiang University, Hangzhou, China

KITPC Program “Plasmonic Nanogaps and Circuits” , October 12-30, 2015, Beijing

Page 2: Nanofiber Coupled Nanoplasmonics

Outline

1. Introduction

2. Nanofiber coupled nanowire plasmonics

3. Nanofiber coupled nanorod plasmonics

4. Conclusion

Page 3: Nanofiber Coupled Nanoplasmonics

Outline

1. Introduction

2. Nanofiber coupled nanowire plasmonics

3. Nanofiber coupled nanorod plasmonics

4. Conclusion

Page 4: Nanofiber Coupled Nanoplasmonics

1. Introduction Nanoplasmonics in Metallic Nanostructures

Unique optical properties to enable routing and active manipulation of light at the nanoscale, and to bridge photonics and nanoelectronics.

M. L. Brongersma et al., Science 328, 440 (2010)

Special advantages

Size and Speed

Page 5: Nanofiber Coupled Nanoplasmonics

http://nano.imra.com/

Size and Speed

Nano Lett. 9, 4515 (2009)

Nanosphere Nanorod Nanowire

Typical low-D metal nanostructures for nanoplasmonics

1. Introduction

0-D 1-D

Nano Lett. 12, 3145 (2012)

Page 6: Nanofiber Coupled Nanoplasmonics

http://nano.imra.com/

Size

Nano Lett. 9, 4515 (2009)

Nanosphere Nanorod Nanowire

Typical low-D metal nanostructures for nanoplasmonics

1. Introduction

0-D 1-D

Nano Lett. 12, 3145 (2012)

Size Optical confinementDeep subwavelength /10 /50 @ 700 nm

Page 7: Nanofiber Coupled Nanoplasmonics

http://nano.imra.com/

Size

Nano Lett. 9, 4515 (2009)

Nanosphere Nanorod Nanowire

Typical low-D metal nanostructures for nanoplasmonics

1. Introduction

0-D 1-D

Nano Lett. 12, 3145 (2012)

Y. P. Wang et al.,Opt. Express 20, 19006

(2012)

Size Optical confinementDeep subwavelength /10 /50

Page 8: Nanofiber Coupled Nanoplasmonics

Au nanowireMode size diameter beam size possibly down to a single-molecule level

Optical confinement

Modal profiles of Au nanowires in water (a) 10 nm; (b) 20 nm @ 660 nm

In air

In water

Mode size 10 nm

Y. P. Wang et al., J. Lightwave Technol. 32, 3631 (2014)

Y. P. Wang et al., Opt. Express 20, 19006 (2012)

Page 9: Nanofiber Coupled Nanoplasmonics

Au nanowireMode size diameter beam size possibly down to a single-molecule level

Optical confinement

In air

Y. P. Wang et al., Opt. Express 20, 19006 (2012)

Large momentum mismatchLow efficiency of photon-to-

plasmon conversion

High reflectivity at the nanowire endface

R. Kolesov et al., Nat. Phys. 5, 470 (2009)

Page 10: Nanofiber Coupled Nanoplasmonics

http://nano.imra.com/

Speed

Nano Lett. 9, 4515 (2009)

Nanosphere Nanorod Nanowire

Typical low-D metal nanostructures for nanoplasmonics

1. Introduction

0-D 1-D

Nano Lett. 12, 3145 (2012)

0-D Nanoparticle (e.g., nanorod: 20nmX100nm): Plasmon life time (LSPR) 10 fs @ 700 nm

Speed

Page 11: Nanofiber Coupled Nanoplasmonics

http://nano.imra.com/

Speed

Nano Lett. 9, 4515 (2009)

Nanosphere Nanorod Nanowire

Typical low-D metal nanostructures for nanoplasmonics

1. Introduction

0-D 1-D

Nano Lett. 12, 3145 (2012)

1-D Nanowire (e.g., 100-nm-diameter Ag Nanowire 0.4 dB/μm)

Plasmon life time (PSPP) 30 fs @ 700 nm

Speed

Page 12: Nanofiber Coupled Nanoplasmonics

http://nano.imra.com/

Speed

Nano Lett. 9, 4515 (2009)

Nanosphere Nanorod Nanowire

Typical low-D metal nanostructures for nanoplasmonics

1. Introduction

0-D 1-D

Nano Lett. 12, 3145 (2012)

Speed highly desired for ultrafast optical response

e.g, Ultrafast optical modulation

Page 13: Nanofiber Coupled Nanoplasmonics

http://nano.imra.com/

Speed

Nano Lett. 9, 4515 (2009)

Nanosphere Nanorod Nanowire

Typical low-D metal nanostructures for nanoplasmonics

1. Introduction

0-D 1-D

Nano Lett. 12, 3145 (2012)

Speed but high loss and broad resonance bandwidth

e.g, Ultracompact waveguide and plasmonic sensing

Page 14: Nanofiber Coupled Nanoplasmonics

Modal profiles of Au nanowires in water (a) 10 nm; (b) 20 nm @ 660 nm

Diameter (nm) Am (μm2) ƞ Lm (μm) α (dB/μm) 10 0.0001 29% 0.10 43.43 20 0.0004 30% 0.19 22.91 50 0.0023 38% 0.54 8.08

e.g., Au nanowire

Mode size 10 nm

Ultrahigh lossY. P. Wang et al., J. Lightwave Technol. 32, 3631 (2014)

Ultra tight confinement Ultrafast speed

Ultrahigh loss

Size and Speed

1. Introduction

Page 15: Nanofiber Coupled Nanoplasmonics

Ultra tight confinement Ultrafast speed

Broad resonance bandwidth

Size and Speed

1. Introduction

e.g., Au nanorod

 P. Wang et al., Nano Lett. 12, 3145 (2012)

Page 16: Nanofiber Coupled Nanoplasmonics

Trade-off: “Confinement Loss Bandwidth” e.g., in subwavelength nanofiber/nanowire waveguides

X. Guo et al., Acc. Chem. Res. 47, 656 (2014)

Tight confinement High loss

Size and Speed

1. Introduction

Page 17: Nanofiber Coupled Nanoplasmonics

1. Introduction Nanoplasmonics in Metallic Nanostructures

Unique optical properties to enable routing and active manipulation of light at the nanoscale, and to bridge photonics and nanoelectronics.

M. L. Brongersma et al., Science 328, 440 (2010)

On the other side, dielectric and semiconductor nanostructures, with miniature size and low loss, may offer opportunities to nanoplasmonics…

Page 18: Nanofiber Coupled Nanoplasmonics

1. Introduction Nanoplasmonics in Metallic Nanostructures

Unique optical properties to enable routing and active manipulation of light at the nanoscale, and to bridge photonics and nanoelectronics.

M. L. Brongersma et al., Science 328, 440 (2010)

On the other side, dielectric and semiconductor nanostructures, with miniature size and low loss, may offer opportunities to nanoplasmonics…

Page 19: Nanofiber Coupled Nanoplasmonics

1. Introduction Nanoplasmonics in Metallic Nanostructures

Unique optical properties to enable routing and active manipulation of light at the nanoscale, and to bridge photonics and nanoelectronics.

On the other side, dielectric and semiconductor nanostructures, with miniature size and low loss, may offer opportunities to nanoplasmonics…

Nanofiber Coupled Nanoplasmonics

Optical micrograph of 650-nm light guiding through a silica (D=500 nm), a ZnO (D=300 nm) and a silver (D=100 nm) nanowires in cascade

X. Guo et al., Laser Photon. Rev. 7, 855 (2013)

Page 20: Nanofiber Coupled Nanoplasmonics

20

http://image.baidu.com

125 μm

Hair

500 nm

Optical fiber with diameter close to or below

L. M. Tong et al., Nature 426, 816 (2003)

Optical Nanofiber

Also appeared as “microfiber, nanowire etc. ”

1. Introduction

Page 21: Nanofiber Coupled Nanoplasmonics

Glass

Polymer

 P. Wang et al., Light Sci. Appl. 2, e102 (2013)

Typical materials

L. M. Tong et al., Nature 426, 816 (2003)

1. Introduction Optical Nanofiber

Page 22: Nanofiber Coupled Nanoplasmonics

X. Q. Wu et al., Nanophotonics 2, 407 (2013)

Glass: Taper drawing

Nanofiber drawing system

Fabrication

1. Introduction Optical Nanofiber

Page 23: Nanofiber Coupled Nanoplasmonics

F. X. Gu et al., Nano Lett. 8, 2757 (2008)

Polymer: Solution drawing

Fabrication

1. Introduction Optical Nanofiber

Page 24: Nanofiber Coupled Nanoplasmonics

Uniform diameter

Smooth sidewall

Surface roughness (RMS) 0.2 nm

Circular cross-section

L. Tong et al., Opt. Express 14, 82 (2006)

Fabrication

1. Introduction Optical Nanofiber

Page 25: Nanofiber Coupled Nanoplasmonics

Elastic or plastic bending

L. Tong et al., Nano Lett. 5, 259 (2005)

Annealing-after-bending

Silica nanofibers

Silica nanofibers

Manipulation

1. Introduction Optical Nanofiber

Page 26: Nanofiber Coupled Nanoplasmonics

26

Tensile strength @RT

Silica NF > 5 GPaSpider silk 2 GPa

300-nm-diameter silica nanofiber with a elastic bending to a 4-μm radius

High mechanical strength

Manipulation

1. Introduction Optical Nanofiber

Page 27: Nanofiber Coupled Nanoplasmonics

Waveguiding Properties

1. Introduction Optical Nanofiber

.0)(

,0)(2222

2222

hkn

ekn

Helmholtz Equations

+Boundary conditions

Analytical solutions of guided modes [1]

[1] A. W. Snyder and J. D. Love, Optical waveguide theory, Chapman and Hall, New York, 1983.

Perfect cylindrical symmetry

rnrn

rn

,

0,)(

2

1

Page 28: Nanofiber Coupled Nanoplasmonics

Propagation constants (β)

Air-clad silica microfiber @ 633 nm

L. M. Tong et al., Opt. Express 12,1025 (2004)

Waveguiding Properties

1. Introduction Optical Nanofiber

Page 29: Nanofiber Coupled Nanoplasmonics

Air-clad silica microfiber @ 633 nm

X. Q. Wu et al., Nanophotonics 2, 407

(2013)

Waveguiding Properties

1. Introduction Optical Nanofiber

Evanescent fields & Energy distribution (HE11 modes)

Page 30: Nanofiber Coupled Nanoplasmonics

D (nm)400 800 1200 1600

0.0

0.2

0.4

0.6

0.8

1.0

633 nm

1550 nm

Silica/air

Fractional power inside the core

L. M. Tong et al., Opt. Express 12,1025 (2004)

Waveguiding Properties

1. Introduction Optical Nanofiber

Evanescent fields & Energy distribution (HE11 modes)

Page 31: Nanofiber Coupled Nanoplasmonics

D (nm)400 800 1200 1600

0.0

0.2

0.4

0.6

0.8

1.0

633 nm

1550 nm

Silica/air

D=200 nm

> 90% energy is guided in the air

Evanescent field

Near-field interactionFractional power inside the core

L. M. Tong et al., Opt. Express 12,1025 (2004)

Waveguiding Properties

1. Introduction Optical Nanofiber

Evanescent fields & Energy distribution (HE11 modes)

Page 32: Nanofiber Coupled Nanoplasmonics

Effective mode size

L. M. Tong et al., Opt. Express 12,1025 (2004)

λ =633 nm

Mode area for optical confinement of 86.5% in power

silica/air

Minimum effective mode size ~ 510 nm

Real diameter

Effective diameter

Possible to realize tightly confined large fractional

evanescent waves

Waveguiding Properties

1. Introduction Optical Nanofiber

Page 33: Nanofiber Coupled Nanoplasmonics

Nanofiber coupled

1. Introduction Nanofiber Coupled Nanoplasmonics

Nanowire plasmonicsPSPP

Nanorod plasmonicsLSPR

High efficiency photon-to-plasmon conversion

Plasmon lasers and sensors

Extraordinary strong coupling effects in coupled nanorod

Page 34: Nanofiber Coupled Nanoplasmonics

Outline

1. Introduction

2. Nanofiber coupled nanowire plasmonics

3. Nanofiber coupled nanorod plasmonics

4. Conclusion

Page 35: Nanofiber Coupled Nanoplasmonics

dielectric plasmonic

1-D nanofiber/nanowire for optical waveguiding

Bound electrons Free electrons

Maxwell Equations + Boundary conditions

Supporting waveguide modes

Page 36: Nanofiber Coupled Nanoplasmonics

Dispersion relation of SPP modes

The dashed line (ω=ck) denotes the dispersion line of light in free space.

To couple light into SPP modes in a nanowire

Momentum mismatch between the photons and plasmons must be compensated

PSPP excitation in a nanowire

X. Guo et al., Laser Photon. Rev. 7, 855 (2013)

2. Nanofiber Coupled Nanowire Plasmonics

Optical Launching

Page 37: Nanofiber Coupled Nanoplasmonics

Prism coupling

Lens-focus coupling

Bulk components with relatively low efficiency e.g.,<1%

PSPP excitation in a nanowire Optical Launching

Conventional approaches

X. Guo et al., Laser Photon. Rev. 7, 855 (2013)

2. Nanofiber Coupled Nanowire Plasmonics

Page 38: Nanofiber Coupled Nanoplasmonics

X. Guo et al., Laser Photon. Rev. 7, 855 (2013)

PSPP excitation in a nanowire Optical Launching Nanofiber coupling approach

photonic nanofiberplasmonic nanowire

Why it is possible?

2. Nanofiber Coupled Nanowire Plasmonics

Page 39: Nanofiber Coupled Nanoplasmonics

X. Guo et al., Nano Lett. 9, 4515 (2009).

PSPP excitation in a nanowire Optical Launching Nanofiber coupling approach

photonic nanowireplasmonic nanowire

the small end scatters evanescent waves for compensating momentum mismatch between the two waveguides

considerable overlap between the two modes

Why it is possible?

Light guided along a photonic nanowire leaves large fractional evanescent waves

2. Nanofiber Coupled Nanowire Plasmonics

Page 40: Nanofiber Coupled Nanoplasmonics

Photon-to-plasmon coupling efficiency ~80%

Silica nanofiber: D=500 nmAg nanowire: D=240 nm, L=12µm

X. Guo et al., Nano Lett. 9, 4515 (2009)

large overlap between the photonic and plasmonic modes

Endface scattering for compensating momentum mismatch

PSPP excitation in a nanowire Optical Launching Nanofiber coupling approach

2. Nanofiber Coupled Nanowire Plasmonics

Page 41: Nanofiber Coupled Nanoplasmonics

Photon-to-plasmon coupling efficiency ~92%

Silica nanofiber Ag Nanowire

X. Y. Li et al., Opt. Express 21, 15698 (2013)

Nanofiber: 300-nm diameterAg nanowire: 120-nm diameterWavelength: 785 nm

PSPP excitation in a nanowire Optical Launching Nanofiber coupling approach

2. Nanofiber Coupled Nanowire Plasmonics

Page 42: Nanofiber Coupled Nanoplasmonics

Coupling length ~220 nm

270-nm-diameter ZnO nanowire

240-nm-diameter Ag nanowire

X. Guo et al., Nano Lett. 9, 4515 (2009)

PSPP excitation in a nanowire Optical Launching Nanowire plasmonic branch couplers

2. Nanofiber Coupled Nanowire Plasmonics

Page 43: Nanofiber Coupled Nanoplasmonics

X. Guo et al., Nano Lett. 9, 4515 (2009)

PSPP excitation in a nanowire Optical Launching Nanowire plasmonic branch couplers

2. Nanofiber Coupled Nanowire Plasmonics

Page 44: Nanofiber Coupled Nanoplasmonics

Fractional output from the Ag nanowire: 488nm —— 4%

532nm —— 8%

650nm —— 64%

Coupling efficiency ~82%

Deducting the guiding loss:

Ag about 0.43 dB/µm

ZnO lower than 0.001dB/µm

X. Guo et al., Nano Lett. 9, 4515 (2009)

PSPP excitation in a nanowire Optical Launching Nanowire plasmonic branch couplers

2. Nanofiber Coupled Nanowire Plasmonics

Page 45: Nanofiber Coupled Nanoplasmonics

X. Guo et al., Nano Lett. 9, 4515 (2009)

PSPP excitation in a nanowire Optical Launching Nanowire plasmonic Mach-Zehnder Interferometer

2. Nanofiber Coupled Nanowire Plasmonics

Page 46: Nanofiber Coupled Nanoplasmonics

(1) Mach-Zehnder Interferometer

3-2. Hybrid “Photon-Plasmon” circuits and devices

As-assembled MZI

ZnO Nanowire: D 330 nm, L 89 µm

Ag Nanowire: D 120 nm, L 6.5 µm

X. Guo et al., Nano Lett. 9, 4515 (2009)

Page 47: Nanofiber Coupled Nanoplasmonics

ZnO Nanowire: D 330 nm, L89 µm

Ag Nanowire: D 120 nm, L 6.5 µm

FSR = 2.75 nm @710 nm

Potential applications: sensors, modulators etc.X. Guo et al., Nano Lett. 9, 4515 (2009)

PSPP excitation in a nanowire Optical Launching Nanowire plasmonic Mach-Zehnder Interferometer

2. Nanofiber Coupled Nanowire Plasmonics

Page 48: Nanofiber Coupled Nanoplasmonics

ZnO nanowire: 400-nm diameter

99.5-µm length

Ag nanowire: 265-nm diameter

16.5-µm length

X. Guo et al., Nano Lett. 9, 4515 (2009)

PSPP excitation in a nanowire Optical Launching Nanowire plasmonic ring resonator

2. Nanofiber Coupled Nanowire Plasmonics

Page 49: Nanofiber Coupled Nanoplasmonics

Reducing cavity loss without sacrificing confinement of the silver nanowire

Q = 520FSR = 3.8 nm

X. Guo et al., Nano Lett. 9, 4515 (2009)

PSPP excitation in a nanowire Optical Launching Nanowire plasmonic ring resonator

2. Nanofiber Coupled Nanowire Plasmonics

Page 50: Nanofiber Coupled Nanoplasmonics

Nanowire Plasmon Laser

X. Q. Wu et al., Nano Lett. 13, 5654 (2013)

Replacing the passive nanofiber with an active semiconductor nanowire

2. Nanofiber Coupled Nanowire Plasmonics

Page 51: Nanofiber Coupled Nanoplasmonics

X. Q. Wu et al., Nano Lett. 13, 5654 (2013)

Hybrid photon-plasmon nanowire laser

Nanowire Plasmon Laser

2. Nanofiber Coupled Nanowire Plasmonics

Page 52: Nanofiber Coupled Nanoplasmonics

2. Nanofiber Coupled Nanowire Plasmonics

Hybrid photon-plasmon nanowire laser

Nanowire Plasmon Laser

X. Q. Wu et al., Nano Lett. 13, 5654 (2013)

Page 53: Nanofiber Coupled Nanoplasmonics

2. Nanofiber Coupled Nanowire Plasmonics

X. Q. Wu et al., Nano Lett. 13, 5654 (2013)

(a, c) 390-nm-diameter CdSe NW 100-nm-diameter Ag NW

(b, d) The gain of the CdSe NW and the plasmonic resonance of the Ag NW are well matched in spectra.

(e) Assemble a hybrid cavity using the CdSe and Ag NWs.

(f) Coupling photoluminescene from the CdSe NW to the Ag nanowire.

Hybrid photon-plasmon nanowire laser

Nanowire Plasmon Laser

Page 54: Nanofiber Coupled Nanoplasmonics

(a) Lasing under a pump fluence of 97 μJ cm-2 (19.4 KW cm-2). (b) Lasing spectra collected from the Ag end-facet, under pump fluences of 27-97 μJ cm-2. (d) Emission intensity versus pump fluence collected from end-facets of the CdSe and the Ag NWs @ dominant lasing peak around 723 nm.

Photon-plasmon laser mode area of 0.008λ2

X. Q. Wu et al., Nano Lett. 13, 5654 (2013)

Page 55: Nanofiber Coupled Nanoplasmonics

X. Q. Wu et al., Nano Lett. 13, 5654 (2013)

Provides spatially separated plasmonic cavity modes with mode size down to deep-subwavelength scale

Ultrafast modulate/switch the laser by plasmonic response

Optical sensing, imaging, quantum information

Hybrid photon-plasmon nanowire laser

Nanowire Plasmon Laser

2. Nanofiber Coupled Nanowire Plasmonics

Page 56: Nanofiber Coupled Nanoplasmonics

Outline

1. Introduction

2. Nanofiber coupled nanowire plasmonics

3. Nanofiber coupled nanorod plasmonics

4. Conclusion

Page 57: Nanofiber Coupled Nanoplasmonics

Typical Au nanorods

3. Nanofiber Coupled Nanorod Plasmonics Plasmonic Nanorods

Size: 20 nm*100 nm; Lifetime: 10 fs Resonance wavelength: 700 nm; Resonance bandwidth: 50 nm

 P. Wang et al., Nano Lett. 12, 3145 (2012) R. Ameling and H. Giessen, Laser Photon. Rev. 7, 141 (2013)

Page 58: Nanofiber Coupled Nanoplasmonics

Typical Au nanorods

3. Nanofiber Coupled Nanorod Plasmonics Plasmonic Nanorods

Scattering from individual nanorods is clearly seen, but the excitation efficiency is low due to the small absorption cross-section of single nanorod compared with the size of the excitation beam.

 P. Wang et al., Nano Lett. 12, 3145 (2012)

Free-space excitation under an optical microscopy

Page 59: Nanofiber Coupled Nanoplasmonics

 P. Wang et al., Nano Lett. 12, 3145 (2012)

3. Nanofiber Coupled Nanorod Plasmonics Optical launching single Au nanorods using nanofiber

Embed nanorods inside a polymer nanofiber

Page 60: Nanofiber Coupled Nanoplasmonics

Photon-to-LSPR-conversion efficiency for single nanorod70% @ 785 nm (coincided with the LSPR peak)

 P. Wang et al., Nano Lett. 12, 3145 (2012)

Replacing the free-space excitation beam by tightly confined waveguiding mode of the nanofiber

Page 61: Nanofiber Coupled Nanoplasmonics

 P. Wang et al., Nano Lett. 12, 3145 (2012)

Polymer nanofiber plasmonic sensors

3. Nanofiber Coupled Nanorod Plasmonics Nanofiber coupled Au nanorod sensor

Page 62: Nanofiber Coupled Nanoplasmonics

 P. Wang et al., Nano Lett. 12, 3145 (2012)

500-nm-diameter nanofiber, 785-nm-wavelength probing light

Fast response ( 0.1 s) Very low operation power (0.5 nW) No photo-bleaching

Plasmonic nanorod humidity sensor

 P. Wang et al., Nano Lett. 12, 3145 (2012)

Page 63: Nanofiber Coupled Nanoplasmonics

One possible approach coupling plasmonic nanorod to a photonic cavities similar to coupling an atom to a cavity

R. Ameling and H. Giessen, Laser Photon. Rev. 7, 141 (2013)

Resonance splitting

Anti- crossing

EIT …

Strong coupling Rabi splitting

3. Nanofiber Coupled Nanorod Plasmonics Plasmonic resonance band (life time) modification

Page 64: Nanofiber Coupled Nanoplasmonics

3. Nanofiber Coupled Nanorod Plasmonics Plasmonic resonance band (life time) modification

Resonance splitting

R. Ameling and H. Giessen, Nano Lett. 10, 4394 (2010)

One example: a pair of nanorods in a microcavity

Page 65: Nanofiber Coupled Nanoplasmonics

3. Nanofiber Coupled Nanorod Plasmonics Plasmonic resonance band (life time) modification

One example: a pair of nanorods in a microcavity

Fabry-Perot cavity (1 μm apart) formed by two parallel gold-mirrors

R. Ameling and H. Giessen, Nano Lett. 10, 4394 (2010)

Multi-band resonanceBandwidth > 5 nm

Resonance splitting

Page 66: Nanofiber Coupled Nanoplasmonics

Typically, the modified plasmonic resonance band shows

R. Ameling and H. Giessen, Laser Photon. Rev. 7, 141 (2013)

coupling plasmonic nanorod to a photonic cavities

Multiple resonance peaks mode splitting is not large enough to keep only one mode but shift out

all others out of the plasmonic resonance range

Obviously large background photon-to-plasmon conversion is not highly efficient in a single cycles of

the resonance

Relatively large bandwidth relatively large loss of the coupled system

 P. Wang et al., Nano Lett. (In press)

Page 67: Nanofiber Coupled Nanoplasmonics

R. Ameling and H. Giessen, Laser Photon. Rev. 7, 141 (2013)

coupling plasmonic nanorod to a photonic cavities

Seeking a photonic microcavity with high Q, small size, and high photon-to-plasmon conversion efficiency

 P. Wang et al., Nano Lett. (In press)

Typically, the modified plasmonic resonance band shows Multiple resonance peaks mode splitting is not large enough to keep only one mode but shift out

all others out of the plasmonic resonance range

Obviously large background photon-to-plasmon conversion is not highly efficient in a single cycles of

the resonance

Relatively large bandwidth relatively large loss of the coupled system

to single-band, narrow bandwidth, free background LSPR

Page 68: Nanofiber Coupled Nanoplasmonics

3. Nanofiber Coupled Nanorod Plasmonics Plasmonic resonance band modification

Again, microfiber or nanofiber becomes an excellent choice.

 P. Wang et al., Nano Lett. (In press)

Tightly confined large fractional evanescent field 0.2-nm-level roughness Optical microcavity with high Q

Page 69: Nanofiber Coupled Nanoplasmonics

OMFC 1: using the fundamental (lowest-order) guiding mode

Optical Microfiber Cavity (OMFC)

X. Q. Wu et al., Nanophotonics 2, 407 (2013)

typical cavity length > 50 μm

Page 70: Nanofiber Coupled Nanoplasmonics

Bottle type

M. Sumetsky, Opt. Lett. 35, 2385 (2010)

Cylindrical microfiber

M. Pöllinger et al., Phy. Rev. Lett. 103, 053901 (2009)

possible to offer cavity length 5 μm

OMFC 2: using the whispering gallery (highest-order) mode

Optical Microfiber Cavity (OMFC)

Page 71: Nanofiber Coupled Nanoplasmonics

M. Sumetsky, Opt. Lett. 35, 2385 (2010)

Here, we choose cylindrical microfiber cavity

Easy fabrication No spatial requirement on nanorod

position Relatively high Q, despite of the

leakage “only 2.542 times less than that of a spheroidal microresonator”

Reasons

OMFC 2: using the whispering gallery (highest-order) mode

Optical Microfiber Cavity (OMFC)

Most importantly, cavity length < 5 μm : 10-fs single-cycle flying time of a photon comparable to life time of plasmon in a Au nanorod

Critical to obtain strong-coupling-induced large mode splitting P. Wang et al., Nano Lett. (In

press)

Page 72: Nanofiber Coupled Nanoplasmonics

Configuration & Structure

3. Coupled Microfiber-Nanoparticle System

Schematic: coupled microfiber-nanorod system

Coupled photonic WGMs of a microfiber and LSPR modes of a nanorod

 P. Wang et al., Nano Lett. (In press)

Page 73: Nanofiber Coupled Nanoplasmonics

Configuration & Structure

3. Coupled Microfiber-Nanoparticle System

Fabrication: coupled microfiber-nanorod system

Silica microfiberAu nanorods  P. Wang et al., Nano Lett. (In press)

Page 74: Nanofiber Coupled Nanoplasmonics

Configuration & Structure

3. Coupled Microfiber-Nanoparticle System

Characterization

Experimental setup

Broadband CW light

 P. Wang et al., Nano Lett. (In press)

Page 75: Nanofiber Coupled Nanoplasmonics

Configuration & Structure

3. Coupled Microfiber-Nanoparticle System

Characterization

WGM mode excited by a single nanorod

Experimental setup  P. Wang et al., Nano Lett. (In press)

Page 76: Nanofiber Coupled Nanoplasmonics

Weak Coupling

3. Coupled Microfiber-Nanoparticle System

large microfiber diameter (D>10 μm) Splitting/Linewidth <1

D=25.4 μm

 P. Wang et al., Nano Lett. (In press)

Page 77: Nanofiber Coupled Nanoplasmonics

Weak Coupling

3. Coupled Microfiber-Nanoparticle System

large microfiber diameter (D>10 μm) Splitting/Linewidth <1

D=25.4 μm D=11.2 μm

Increase D Increase FSR  P. Wang et al., Nano Lett. (In

press)

Page 78: Nanofiber Coupled Nanoplasmonics

Weak Coupling

3. Coupled Microfiber-Nanoparticle System

large microfiber diameter (D>10 μm) Splitting/Linewidth <1

Diameter-dependent FSR

Experimental data are in good agreement with the calculation

Experimental

Calculation

 P. Wang et al., Nano Lett. (In press)

Page 79: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Mode Splitting

When D is reduced below 10 μm single-cycle flying time <100 fs Mode splitting observed

e.g., D=5.6 μm

Splitting/Linewidth 1

 P. Wang et al., Nano Lett. (In press)

Page 80: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

Strong coupling occurs large mode splitting

 P. Wang et al., Nano Lett. (In press)

Page 81: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

D=1.46 μm

Strong coupling occurs large mode splitting

 P. Wang et al., Nano Lett. (In press)

Page 82: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

Splitting 42.9 nmLinewidth 2 nm

Splitting/Linewidth 20Splitting energy 133 meV

Strong coupling occurs large mode splitting

D=1.46 μm

The narrowest LSPR linewidth reported in a nanorod

Almost free background

Single-band

 P. Wang et al., Nano Lett. (In press)

Page 83: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

Strong-coupling induced 2-nm-linewidth single-band plasmonic resonance in a Au nanorod !

 P. Wang et al., Nano Lett. (In press)

Page 84: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

Strong-coupling induced 2-nm-linewidth single-band plasmonic resonance in a Au nanorod !

Shining 2-nm-linewidth light to launch LSPR in an uncoupled Au nanorod

What’s the difference?

650-nm laser light P. Wang et al., Nano Lett. (In

press)

Page 85: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

Strong-coupling induced 2-nm-linewidth single-band plasmonic resonance in a Au nanorod !

Shining 2-nm-linewidth light to launch LSPR in an uncoupled Au nanorod

What’s the difference?

650-nm laser light

Dotted line: excitated under same spectral density

 P. Wang et al., Nano Lett. (In press)

Page 86: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

Agrees very well with calculation

Normalized electric field distribution

Nanorod

 P. Wang et al., Nano Lett. (In press)

Page 87: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Splitting/Linewidth >1

Agrees very well with calculation

Normalized electric field distribution

Nanorod

 P. Wang et al., Nano Lett. (In press)

Page 88: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Physical underlying Radiation to free space

Coherently pulled back into WGMs

D=1.46 μm  P. Wang et al., Nano Lett. (In

press)

Page 89: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<5 μm)

Physical underlying

Significantly increased life time > 200 fs

650-nm laser light 10 fs

Better coherence

Radiation to free space

Coherently pulled back into WGMs

D=1.46 μm  P. Wang et al., Nano Lett. (In

press)

Page 90: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<1 μm)

D=860 nm

Higher bending loss

 P. Wang et al., Nano Lett. (In press)

Page 91: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<1 μm)

Higher bending loss

D=860 nm  P. Wang et al., Nano Lett. (In

press)

Page 92: Nanofiber Coupled Nanoplasmonics

3. Coupled Microfiber-Nanoparticle System Strong Coupling smaller microfiber diameter (D<1 μm)

D=510 nm

No WGM availableBack to 50-nm

 P. Wang et al., Nano Lett. (In press)

Page 93: Nanofiber Coupled Nanoplasmonics

3. Nanofiber Coupled Nanorod Plasmonics

Narrow-linewidth single-band plasmonic resonance

Plasmonic sensing & detection Better spectral resolution Higher sensitivity Lower detection limit

Potential applications

Deep-sub- plasmon laser Narrower linewidth Lower threshold Higher efficiency

Many others …

Route and manipulate light at the nanoscale with longer lifetime, better coherence, higher field enhancement and lower loss.

 P. Wang et al., Nano Lett. (In press)

Page 94: Nanofiber Coupled Nanoplasmonics

Outline

1. Introduction

2. Nanofiber coupled nanowire plasmonics

3. Nanofiber coupled nanorod plasmonics

4. Conclusion

Page 95: Nanofiber Coupled Nanoplasmonics

Nanofiber coupled

4. Conclusion Nanofiber Coupled Nanoplasmonics

Nanowire plasmonicsPSPP

Nanorod plasmonicsLSPR

High efficiency photon-to-plasmon conversion

Plasmon lasers and sensors

Extraordinary strong coupling effects in coupled nanorod

Single-band 2-nm-linewidth LSPR

Page 96: Nanofiber Coupled Nanoplasmonics

X. Q. Wu et al., Nanophotonics 2, 407 (2013)

Outlook

96

Page 97: Nanofiber Coupled Nanoplasmonics

X. Q. Wu et al., Nanophotonics 2, 407 (2013)

Outlook

97

Page 98: Nanofiber Coupled Nanoplasmonics

Nanophotonics Group @ ZJU 2015 www.nanophotonics.zju.edu.cn

Current and former group members

Acknowledgement

Page 99: Nanofiber Coupled Nanoplasmonics

Collaborators

Acknowledgement

Prof. Qihuang Gong,

Yunfeng Xiao, Guowei Lu

Peking Univ, China

Prof. Eric Mazur Harvard University (USA)

Prof. Min QiuZhejiang University (China)

Prof. C. Z. NingASU (USA)

Prof. Jimin BaoUniversity of Houston (USA)

Prof. Younan XiaGatech (USA)

Page 100: Nanofiber Coupled Nanoplasmonics

National Science Foundation of China ( NSFC)

National Basic Research Program of China

Ministry of Education, China

etc.

Research Funds from

Acknowledgement

Page 101: Nanofiber Coupled Nanoplasmonics

Thank you !