GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan...

46
GROUP MEMBERS Brad Wheeler 201181622 Jonathon Stiberc 201193904 Jesse Campbell 300164349 Dusan Bijelic 201310412 Alex Williamson 99477646

Transcript of GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan...

Page 1: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

GROUP MEMBERSBrad Wheeler 201181622Jonathon Stiberc 201193904Jesse Campbell 300164349Dusan Bijelic 201310412Alex Williamson 99477646

Page 2: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

ContentsPortal Frames

Make-up of Portal Frames

Portal Frame connections

Comparison of Portal Frame connections

Bracing Systems

Pre-cast Concrete

Tilt-up Concrete

Envelope Systems

Design constraints and considerations

WAREHOUSE-General Info.

Why we chose pre-cast concrete

Lighting of warehouse

Construction process of the panels

Roofing (Warehouse)

Member Sizes (Warehouse)

SHOWROOM-Mezzanine Flooring

Glass and glazing

Roofing (Showroom/Office) Member sizes (Showroom/Office)

Site Works

References

Page 3: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

IntroductionIn forming the construction of industrial or commercial buildings many issues can arise.

Significant amounts of research need to be done before the construction begins. What is

the facility going to be used for? What is the facility going to be made from? Does the

design fit the look the client is after? These are just some of the different issues that have

to be addressed.

The following slides show some options that are on offer to fit the requirements of this

assignment including a critical review of structural systems and

construction processes.

<<Previous Home Next>>

Page 4: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Portal FramesA portal frame can be defined as “a continuous rigid frame with a restrained joint between

the column and beam” (Jeremy Ham, Lecture 1 Portal Frames).

In the early days, portal frames were not used. Steel framed construction

consisted of a column and truss configuration. Due to rising labour costs, the

portal frame design was adopted being particularly economical in spanning ranges

from 15 to 45m. A column and truss arrangement has a much smaller mass

comparison to the portal frame, but when the bigger picture is considered like

fabrication, erection, and the relative ease of the work to erect the portal

frame, it’s not hard to see that it is the preferred system.

More recently advances have been made in the development and use of timber portal

frames, which can now span very long lengths. Timber is a much lighter option and

cheaper in terms of cost and labour, but does not offer the same strength as steel.

<<Previous Home Next>>

Page 5: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Make-up of Portal Frame

<<Previous Home Next>>

Page 6: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Types of Portal FramesThe types of portal frame systems that are available include:

-One-way Rigid/Braced Framework

-Two-way Rigid/Braced Framework

ONE-WAY RIGID/BRACED FRAMEWORK

One way rigid framework is a very popular form of a framework throughout the industry.

One way rigid framing is generally suitable to most types of structural work such as Low

rise, Rectangular, Industrial and Architectural. This particular type of framework is a cost

effective and a viable option to many as it embraces many advantages, such as simple

connection methods, the use of “I” columns, plastic design methods and continuos beam

design. Types of arched portal frame options are available such as three pin (pin joints at

column bases and crown (apex), two pin (pin joints at either supports (columns) or rigid

frame (rigid joints, bending occurs in columns of the frame).

<<Previous Home Next>>

Page 7: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Types of Portal Frames cont.Bracing occurs along the planes of the structure, different forms of cross bracing help

distribute lateral forces such as wind loads, along the unbraced plane the rigid frame

helps resist lateral forces. Overall very few disadvantages are evident in this form of

framework though the fact that the unbraced plane heavily relies on rigid connections,

thus making it not as strong as the braced plane evidently. Also the fact that areas must

be reserved for stabilizing elements can ultimately restrict the layout or design of

structure.

TWO-WAY RIGID/BRACED FORMWORK

In comparison to the One-way rigid there is more freedom in terms of planning, Two-

way rigid is suitable for most structures and applied to types of framing such as Multi-

story, Low-rise, Industrial and Architectural. Unlike One-way rigid framework Two-way

has the ability to resist lateral forces without the need for any stabilising elements. The

type of frame work is seemingly economic though the fact there are more connections

there are more thus increasing expenses.

<<Previous Home Next>>

Page 8: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Types of Portal Frames cont.

A major advantage as stated previously is the fact of flexibility in terms for planning and

the ability to decrease the size of certain members throughout the structure due to

more fixings. Though overall one negative tends to cancel another out and it is evident

that it will even out in terms of costs.

Unlike rigid Two-way Braced framing employs and relies on the use of stabilising

elements, therefore any lateral forces from any course can be resisted. Beams are

connected using flexible connections but are pin ended. Two way braced framework

uses a simple connection method thus making it more cost effective in comparison to

Two-way rigid framing system. The Two-way braced framing system can be applied to

Low-rise and Medium-rise rectangular frame works.

<<Previous Home Next>>

Page 9: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Portal Frame ConnectionsThe three types of portal frame connections include:- Two pinned- Three pinned- Rigid

TWO-PINNED

Two-pinned portal frames have a two bolt connection to the footing which allows loads to

be transferred directly through to the soil. Two-pinned portals have a rigid connection at

the apex and pin joints at the knees. The maximum bending occurs at the apex and

knees of the portal frame.

THREE-PINNED

Three-pined portal frames like the two-pinned portal frames have a two bolt connection to

the footing, allowing loads to be transferred directly to the soil. Three-pinned portals have

pin joints at the apex and knees. In the three-pinned portal maximum bending occurs at

the knees.

<<Previous Home Next>>

Page 10: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Portal Frame Connections cont.RIGID

Unlike the two and three-pinned portal frames, the rigid base portal frames’ are

connected to the footing via four bolts. For the rigid frame to be effective these four bolts

have to spaced as far away from the centre line of the column as possible. This forms a

more rigid connection at the base allowing the loads to be transferred throughout the

footing and then to the soil, rather than directly to the soil.

Bending in the rigid frame occurs at all connections.

<<Previous Home Next>>

Rigid Connection

Source: Jeremy Ham, Lecture 1 Portal Frames

Pin Connection

Bolts

Page 11: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Comparison of Portal FrameConnections

There are a few differences that occur between both pin and rigid based connections.

The of the main differences is the flow of load through the framework. This means that the pin

based connections allows for a smaller and simpler footing as the load is

transferred straight into the soil. This could be seen as one of the disadvantages of the rigid

based connection, that is that more concrete is required for the footing.

One of the other advantages of using the pin-based connection is that it can be used

when the soil conditions under the structure are poor. This is because the footings are smaller

and are less effected by ground movement.

However nowadays the pin-based connections is used less frequently as the rigid form.

<<Previous Home

Next>>

Page 12: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Bracing Systems

To make the portal frame stronger and more rigid different types of bracing methods are

used.

For buildings less than 60m, generally the bay on each end of the portal frame

is braced to stabilise the structure. Sometimes only one end is braced, but

this means longitudinal eaves and ridge struts are required. Wind forces on the

end that isn’t braced have to be transferred through the building length.

Economically, bracing each end of the frame is a better option.

Source: Alex Williamson, 2004

Home Next>><<Previous

Page 13: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Pre-Cast ConcretePre-cast concrete is an alternative form of construction where no framing systems arerequired. The Pre-cast concrete panels are created off site in a factory and are designedand built to the engineers specifications. When cured, the concrete is then transported tosite and put into position with the aid of cranes and other various lifting aids.There can be seen to be many advantages associated with using pre-cast panels. Someof these advantages include:- Strength: Pre-cast panels are very strong and hard to break.- Durability: They are very durable and last a long time before deforming.- Acoustics: Are effective when it comes to stropping sound transmission. In the case

of this warehouse assignment the panels would work well to stop noise being transmitted between the warehouse and the showroom.

- Time: The pre-cast panels can be installed very quickly and can be seen to be a lot quicker to install than the tilt-up methods.

- Ease of installation: By using cranes the pre-cast panels are easily installed.- Accuracy: The panels are very accurate as they are made to the size and

specifications of the engineer.

<<Previous Home Next>>

Page 14: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Pre-Cast Concrete cont.

- Aesthetics: The look of the panels can be

changed to meet the clients demands by

either painting or rendering the panel.

- Availability: As they are a widely used

product, not only in commercial construction

but also residential construction they are

readily available.

- Water resistance: They are very waterproof

and weather resistant.

- Low Maintenance: Once installed and given

coat of paint no other maintenance is

required.

Source: Jeremy Ham, Lecture notes: Tilt-up.

This photo shows the cranes lifting the pre-cast panel into position ready for fixing.

Home Next>><<Previous

Page 15: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Pre-Cast Concrete cont.

Once erected the pre-cast panels can then be connected to the structural members

of the roof. The rafters (universal beams) can be connected to the pre-cast panels by

two methods. They are welding or bolting. The rafters cannot be directly connected

to the concrete itself, so a steel plate is cast into the panel, (as seen in the picture

below).

Connection plate in the panel. In the rafter is both bolted and welded to the panel.

Source: Alex Williamson, 2004

Home Next>><<Previous

Page 16: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Pre-cast connections

Connection plate between internal load bearing walls

Connection plate between two concrete panels.

Source: Alex Williamson 2004

Source: Alex Williamson 2004

<<Previous Home Next>>

Page 17: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Tilt-Up ConcreteTilt-up is one of the most advanced construction methods and it can be used in

almost every situation from warehouse facilities to domestic homes.

Tilt-up concrete construction is not new; it has been in use since the turn of the

century.

Since the mid-1940s it has developed into the preferred method of construction for

many types of buildings and structures. They are attractive, efficient and long lasting.

Damage to a concrete building from a truck or fork-lift is minimal compared to metal

or wood buildings which usually sustain substantial damage from similar incidents.

Fire resistance of concrete can extend the building's life, plus tilt-up panels may be

used for the interior fire walls, and buildings may be spaced closer together if

necessary.

<<Previous Home Next>>

Page 18: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Tilt-Up Concrete cont.Tilt-up concrete is known for its fast track methods as it provides Design and Build

system for your project where building construction proceeds while the design is

developed, speeding completion. This allows the wall panels to be completed while the

rest of the building is designed. Many phases are completed simultaneously; therefore it

allows you to occupy the building sooner. Due to the floor slab being poured first, the

other trades can work sooner and in a better work environment, which saves time and

money.

Another one of little but affective advantages is the insurance premium as it will be to be

lower compared to other structures, as tilt-up construction is considered more reliable

than steel or timber structures. Tilt-up concrete building will require less maintenance.

The exterior can be left unpainted with no damage from the elements. If painting is

desired, it needs to be re-painted only every five to ten years. Concrete interiors are less

subject to damage, and easier to wash down.

<<Previous Home Next>>

Page 19: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Tilt-Up Concrete cont.

Source: Alex Williamson, 2004

Source: Alex Williamson, 2004

The concrete setting inside the mould (formwork).

Stack casting, possibly three high.

The formwork for the tilt-up

HomeNext>><<Previous

Page 20: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Envelope SystemsWhen talking about the envelope system, “the walls act as a selective filter between theuncontrolled exterior environment and the controlled interior environment” (Jeremy Ham, Lecture notes: Envelope Systems, 2003).Essentially building envelopes are the mediators between outdoor and indoorenvironments. As such, and depending on their characteristics, they play a key role indetermining the amount of heat loss and gain to and from an indoorspace, and consequently, play a major role in influencing the amount of energy used toachieve the desired indoor thermal comfort ranges. The building envelope acts like theskin of the building and includes the walls, roof, windows and doors.

• In the coastal climatic zone the dominant energy requirement is for cooling. The energy conservation strategy should be to reduce summer heat gains.

• In the medium and high mountainous climatic zones, the energy requirement is for heating. The energy conservation strategy should be to reduce heat loss to the outside.

<<Previous Home Next>>

Page 21: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Envelope Systems cont.When deciding on the building envelope you must take into consideration what the

eventual use of the building is and what equipment is to be stored in the building.

Considerations include the value of the materials and also the mode of transport in and

around the building. In the majority of cases forklifts are used in the warehouse to

transport stock therefore a solid envelope is required for the bottom 2-3 metres.

Generally this is due to ‘crazy’ forklift drivers and possibly truck drivers having to back

semi trailers into and out of the building. Damage can be done to sheet metal easily and

Is quite expensive to repair.

Theft is a major problem in industrial areas and must be considered when deciding on the

envelope. In many cases concrete panels are used in the entire envelope system to

prevent wood be thief’s cutting holes in the sheet metal.

<<Previous Home Next>>

Page 22: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Design constraints and considerations

Upon designing the warehouse and the showroom certain considerations hadto be made. The major areas that had to be considered in the design andhad to comply with certain standards included:

- Health and Amenities - Fire Resistance/fire proofing - Exits- Service and Equipment

HEALTH AND AMENTITIES- Sanitary and other facilities: We worked out that the warehouse and showroomtogether would have to be able accommodate up to 30 employees, roughly 15 of bothmale and female. Therefore this number would determine the number of toilets andwashbasins etc..In order to fully service the warehouse and showroom, 6 closet pans, 2 urinals and 3washbasins would be required.

<<Previous Home Next>>

Page 23: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Design constraints and considerations cont.

- Light and ventilation: The area of lighting can be broken up into both natural and

artificial lighting. Natural lighting can be achieved by using skylights (eg. Laserlite) in the

roof.

In domestic buildings the minimum amount of light to fulfil regulations is 10% of the floor

area, however in commercial buildings, eg. The warehouse, according to regulations no

Light is required. Light is required in the showroom.

Ventilation is not required for commercial buildings, but because of the nature of the

warehouse, gas powered forklifts may be used and therefore the warehouse will need to

be ventilated to get rid of the fumes. Vent ridges will be used.

- Sound insulation: Between the warehouse and the showroom should not be too much of

a problem as the pre-cast concrete panels are good insulators of sound.

<<Previous Home Next>>

Page 24: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Design constraints and considerations cont.

FIRE RESISTANCE/FIRE PROOFING

Fire proofing is a major consideration when designing both the warehouse and the

Showroom. Because the two areas are considered as separate components fire

proofing of the openings is required. For the door that connects the warehouse and the

showroom a 2 hour FR (fire rated) door will be used. For the window above that door a

sprinkler system will be used to stop the spread of any fire.

EXITS

An exit can be defined as an opening in the warehouse or showroom that allows people

to evacuate the building in case of an emergency, freely and safely.

The travel distance between exits can be no more than 20 metres from any point in the

warehouse. Therefore for our warehouse design, 8 exit doors are required to fulfil this

requirement.

<<Previous Home Next>>

Page 25: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Design constraints and considerations cont.

SERVICES AND EQUIPMENT

- Exit signs: Exit signs are to be installed above all exits, and according to regulations

must be clearly visible to people approaching or using the exit.

- Fire Hoses/Fire Hydrants: A fire hose and hydrant must be provided within the

warehouse to service the whole building. Therefore roughly two hose reels and

hydrants would be sufficient.

<<Previous Home Next>>

Page 26: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

WAREHOUSEPlans

<<Previous Home Next>>

Page 27: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

General Information- Property location: 3 Grunge Street, Geelong- The warehouse is 1600 sq.m. (40 * 40 metres)- The pre-cast concrete panels are 8m long, 8m high and 200 mm thick- All panels are load-bearing- All up 20 pre-cast panels will be required for the job- Doors for the truck entrance/exit are 5m long by 4.5m high- These doors are aluminium roller doors- The pallets inside the warehouse measure 1.1m * 1.1m. These pallets are stacked 5

high.- The width of the rows between the pallets shall be 2m , in order to accommodate for

the forklift.- The roof pitch of the warehouse is 3 degrees.

<<Previous Home Next>>

Page 28: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Why we chose Pre-castBuilding is all about time and money and that was the main influence in the decision

to build using pre-cast concrete panels. Load bearing panels compared to non load

bearing panels are more expensive. Non load bearing panels are $100 – $120 m²

compared to $120 - $200 m² for load bearing panels. The difference in price can be

made up in the fact that you only need structural steel members for the roof. Panels

can be erected in one week by one team. This saves money and time, by having a

crane on site for only a week compared to 2-3 weeks for other construction methods

can save thousands and also means the tenants can occupy the building sooner.

Load bearing pre-cast panels also distribute the load evenly. Rather than having the

load directed at a single point load (base of column) it is spread over the length of the

pre-cast panel. Also by having a panelling as your total cladding system it reduces

the need for further bracing.

<<Previous Home Next>>

Page 29: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Why we chose Pre-cast

Pre-cast panels also contribute to the security of the assets kept within the warehouse

which in our eyes opens up the opportunity to have several clients bidding for the

space available and increase the renting price.

The targeted tenants would be electric retail stores (e.g. Dick Smith, Harvey Norman,

The Good Guys etc.) or clothing companies (e.g. Rip Curl, Cotton On, Quicksilver

etc.). We believe that the development which posses appealing looks and great

security will be extremely popular within the market of not so aesthetic industrial area.

It will be different and will become more appealing to potential investors, and their

future clients.

<<Previous Home Next>>

Page 30: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Lighting of the warehouseArtificial Lighting

When designing and choosing the lighting for the warehouse you must take into

consideration both finance and health risks. It is commonly known that the

inappropriate amount of light can lead to low productivity but it can also cause SAD

seasonal affective disorder, this is a form of depression. This can be helped being

exposed to high levels of light, approximately 2500 lux to 10,000 lux for up to 2-4

hours a day.

The highest priority for most buildings is simply the cost, both for purchase and

running costs, and longevity of the product.

With all these considerations taken into account Compact Fluorescent where chosen

these lamps provide cost savings, long life, high light output, excellent colour

rendering, and indoor or outdoor options.

<<Previous Home Next>>

Page 31: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Construction Process of Panels• PROCESS• Clear site and set up for the slab• Prepare and pour edge beams• Pour slab, and let procurement occur for up to a week• Truck in engineered precast panels, and sit into place with a cranage team • Use bracing to hold up each panel until gradually you work you way around the entire

building• Grout is used as a bonding agent to secure the panels to the floor• Welding plates are used to secure the panels to each other• Roofing beams are bolted to brackets which have been set in at the appropriate

places on the panels.• Each beam that is secured across the structure stabilises the structure even more.• Once roof structure is in place guttering can be set in place and drainage secured• Only when the roof support is in place can the bracing for the panels be removed• Sheet iron is generally used as roof cladding• Once the roof is in place electrical work can begin• Offices can begin to be fitted out (suspended ceiling, air ducts, plumbing etc.)• Doors and windows are put into place soon after to bring the building to lock up.

<<Previous Home Next>>

Page 32: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Drawings + sketches

<<Previous Home Next>>

Slab and edge beam

150

150

200

300

Elevation (side)

Page 33: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Drawings + sketches

<<Previous Home Next>>

Mesh to keep out birds etc..

Vent Ridge

Rain Head

Plan View

Elevation

Page 34: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

CAD Model

<<Previous Home Next>>

460UB

Purlins

Slab

Pre-cast

Sarking

Sheet roofing

CAD done by Jesse Douglas Campbell.

Page 35: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

RoofingThe first part of the roof that had to be established was the beams. We found that 460UB 16mm thick was able to span the required distance. The beams were spaced at eight meters, creating five bays per side in the roof, and creating a roof pitch at 3 degrees.

We chose 150x50 “C-purlins” for extra strength. The purlins span eight meters and were butt joined at the cleats welded to the top of the beams. These types of purlins had to be spaced at maximum 1200c/s. Our purlins are spaced at 1125c/s, but only one meter from the apex and the pre-cast panel for extra support at the ends.

Fire rated foil and mesh were placed on the top of the purlins. We chose trim deck roofing because of its spaning capacity and availability. Wonder-glass (fluro) was chosen as the skylight as it let in the most natural light, reducing artificial lighting costs. The use of 65mm wether lock washes was required on the wonder-glass. One meter of trim-deck was placed at the ends of the wonder-glass for extra fire proofing. Box gutters are 100mm deep 600 wide.

A 100mm sump was placed in the middle of each bay, allowing the water to be caught and transported to the 150mm PVC storm water pipes connected to the bottom of the beams. Flashing is placed over

the top of the pre-cast to the box gutter with anti-capillary walls stopping the water from getting inside.

<<Previous Home Next>>

Page 36: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Member Sizes (rules of thumb)- Pre-cast load bearing panels200mm thick8m long * 8m high

- Beams (Rafters)460 UB20m span8m spacing

- Purlins150mm * 50mm * 4mm8m span1.125m spacing

- Doors (fireproof)2040mm*950mm

- Roller Doors5m * 4.5m

- Safety Mesh2mm

- Fire rated Sarking2mm

- Roof Sheeting2mm760mm covering800mm wide20m span

<<Previous Home Next>>

Page 37: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

SHOWROOMPLANS

<<Previous Home Next>>

Page 38: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Mezzanine Floor

Ultimately we opted for the Duragal Mezzanine Flooring System; it was a simple but effective

approach to flooring systems in our office. Access to the second floor is via a ramp at an incline

of 6.6° as opposed to the use of a staircase, this therefore enabled disabled access to the

second floor without having to install a lift or a wheelchair elevator in the staircase.

The Duragal Mezzanine Flooring System is able to be installed on site without the need for any

welding. Each lightweight member has a cleaned surface and is specially coated (galvanized).

The Duragal Flooring System is specially suited to indoor usage and members have reasonably

large spans thus decreasing the amount of materials. Generally the fact it embodies a high

tensile strength and is also lightweight it became an appealing option of a flooring system for our

office.

<<Previous Home Next>>

Page 39: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Mezzanine Floor cont.Members

• 5kPa Floor;Bearers: Continuos Span

2/300x90 & 8mm thick Span: 5m Spacing: 5m

Joists: Continuos Span, 150 x 50 & 5mm thickSpan: 5mSpacing: 600mm

Columns: Sizes: 89x89x2.7Bracing:

Knee Bracing

Overall the Mezzanine Flooring System was a viable and cost effective flooring system for our office. It is simple to install, durable and lightweight. The flooring can be installed on site and fits well inside out office space. Plaster covers our walls thus hiding the framing which may not look so appealing in our showroom.

<<Previous Home Next>>

Page 40: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Glass + GlazingGlazing

Manufacturers usually represent the energy efficiency of windows in terms of there U-

values (conduction of heat) or there R-values (resistance of heat). High R-value

means low heat loss and high U-value means it has a high heat loss.

There are several types of coatings of glazing:

• Low-e glazing: Coatings are thin and reduce heat transfer through windows.

• Spectrally selective coating: Next generation of low-e technologies. These coatings

filter out 40% - 70% of heat normally transmitted through the glass.

• Heat Absorbing Glazing: Another technology uses heat-absorbing glazing with tinted

coatings to absorb solar heat gain. Some heat, however, continues to pass through

tinted windows by conduction and radiation.

• Reflective coatings: Like black-tinted coatings, reflective coatings greatly reduce the

transmission of daylight through clear glass. Although they typically block more light

than heat

<<Previous Home Next>>

Page 41: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Glass + Glazing cont.Glass

The glass chosen was 6mm laminated glass in light weight aluminium sections, the

price of this glass is approximately $273 m2.

The reason for this choice is simply that it was the cheapest, and most practical. They

are commonly used therefore there will be no trouble with the order and delivery.

<<Previous Home Next>>

Page 42: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

RoofingIn the roof for the offices/showrooms, for simplicity we used the same 460UB 16mm

thick with the flanges 190mm wide. The beams in the office/showroom are on the

same pitch (3º) as the warehouse and are spanning the same distance as on the

warehouse, however, on the office/showroom the beams are spaced at 5m c/s and

the roof is skillion sloping towards the warehouse instead of pitched. The 5m spacing

created of the beams created 4 bays in the roof. ‘C-purlins’ 150x50mm were used on

the skillion roof spaced at 1000mm. The spanning of the purlins was 5m and butt

together at the cleats fabricated on the beams. Safety mesh and fire-proofed sarking

was laid on top of the purlins and roof sheeting was fixed. The roofing chosen for the

skillion roof was clip-lock roofing. This material was chosen because of its ease of

connection along with its availability. 12x45mm text screws were used to fix the

sheeting with neo washers used to seal between the screw and the sheet. The same

box guttering used in the warehouse was used in the office/showroom (100x600mm).

A 100mm deep sump was placed in each bay to catch the storm water and be taken

out of the facility.

<<Previous Home Next>>

Page 43: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Member Sizes (rules of thumb)

- Beams/Rafters – 460UB, 190 Flange, 16mm steel- Purlins ‘C-section’ – 150x50x3mm thick- Load Bearing Precast Concrete Panels – 200mm thick- Wall Studs – 90mm steel- Duragal: Columns – 89x89x3mm thick

Bearers – 2/300x90x8mm thick

Joists – 150x50x5mm thick

- Doors: Fire Rated – 950x2040mm

Other – 820x2040mm

<<Previous Home Next>>

Page 44: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Site WorksSITE PLANNING

The site is located at 3 Grunge rd in Geelong’s industrial area. It spreads over

9,406m². The ground has almost a 6m slope over the 80m of its width. The site can

be accessed via the entry that runs off the main road leading towards the concreted

driveway that leads clients to the car parks, warehouse, showroom, and the offices.

There will be 14 car parks including one disabled car park. The car park dimensions

are 2.6x5.4m and the disabled car park is 3.2x5.4m. There will be a turnaround that

assists the truck drivers while reversing their trucks into the warehouse so that they

can be loaded or unloaded. The ground will be excavated until the same level is

achieved across the whole site. For the area the warehouse covers, roughly 2000m³

of soil has to be excavated over the 40m length of the warehouse. For the outside

area of the site grass, trees and plants will be used for landscaping.

<<Previous Home Next>>

Page 45: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

Site Works

EXCAVATION

Excavation can range from being a quite simple task to very difficult depending on the

circumstances, before any site works can take place soil testing is required.

The site is cleared and levelled, in some cases further digging is needed for

basements. Work is done to prepare for the slab or strip footings. All excess material

(eg. Rubbish, excess soil) is trucked off site.

<<Previous Home Next>>

Page 46: GROUP MEMBERS Brad Wheeler201181622 Jonathon Stiberc201193904 Jesse Campbell300164349 Dusan Bijelic201310412 Alex Williamson99477646.

ReferencesEconomical Structural Steelwork 4th edition, Australian Institute of Steel ConstructionConstruction And Structures 2 Reader, Jeremy j. Ham, Deakin University School of Architecture andBuilding,2004

Ham, Jeremy J, Lecture: Portal Frames, Deakin University, Geelong, Australia, 2004.

Ham, Jeremy J, Lecture: Tilt-up, Deakin University, Geelong, Australia, 2004.

Ham, Jeremy J, Lecture: Envelope Systems, Deakin University, Geelong, Australia, 2003.

(Unknown 2004) www.eere.energy.gov

(Unknown 2004) www.hilt-up.org

(Unknown 2004) www.onesteel.com

(Unknown 2004) www.gelighting.com/na

(Unknown 2004) www.girotto.com.au

(Unknown 2004) http://www.onesteel.com/images/db_images/productspecs/MezzFloor%20Brochure.pdf

Building Code of Australia (BCA ) Volume 1

<<Previous Home