CT Filters - Passive

download CT Filters - Passive

of 18

Transcript of CT Filters - Passive

  • 8/17/2019 CT Filters - Passive

    1/18

    1/18

    EECE 301Signals & SystemsProf. Mark Fowler 

    Note Set #35

    • C-T Systems: CT Filters - Passive

  • 8/17/2019 CT Filters - Passive

    2/18

    2/18

    Introductory Comments

    Recall that we already talked about ideal CT filters:• |H()| is Constant in Pass band • |H()| is zero in Stop band (Transition Band has zero width)•   H() is linear in Pass band 

    We also saw that such ideal filters can not really exist because they would needto be non-causal!!

    Here we’ll take a brief look at some of the kinds of CT filters that  can be made…•  Note… all CT filter behavior exploits the fact that capacitors and

    inductors have an impedance that varies with frequency!

    And we’ll illustrate how to describe such filters using:• Transfer Function• Frequency Response

    • Pole-Zero Diagrams

    Also… keep in mind that although DT filters only need to be examined over –  to rad/sample (their Freq Resp repeats outside of that)… CT filters needto be examined for how they behave over –  to rad/second . Thus, we will

    mostly plot them on a log frequency axis… with dB for the magnitude.

    “CT Filters” are also

    called “Analog Filters”

  • 8/17/2019 CT Filters - Passive

    3/18

    Practical Filter Specification

    LPF Spec – Version 1

    To make filter “more ideal”: p 0, s 0, s  p

    3/18Pass-band Stop-bandTransition

    Specs for HPF, BPF, & BSF are similar…

    Unlike for DT… for CT we

    need look all the way up to

  • 8/17/2019 CT Filters - Passive

    4/18

    | H ( )|

    0 dB

    c

     –3 dB

    “Decade” = 10x Change

     

    dB

    LPF Spec – Version 2

    4/18Pass-band

    Specs for HPF, BPF, & BSF are similar…

    Passband cutoff frequency  c is

    defined at the “–3 dB point”.

    If passband is at other than 0 dB

    the cutoff is at “3 dB down” from

    the passband level.

    Log scale

    Filter Specs• Cutoff Freq @ “–3 dB point”

    •   dB per Decade (Rolloff Rate)

  • 8/17/2019 CT Filters - Passive

    5/18

    5/18

    CT Filter Types

    Recall that DT filters were categorized as recursive (IIR) vs. non-recursive (FIR).

    CT filters don’t have a corresponding categorization… they all have infiniteduration impulse responses!!!

    Instead the main way to categorize CT filters is: Passive vs. Active

    Passive: These filters use only “passive components” (resistors, capacitors, andinductors) and do not contain any op amps or transistors.

    • One main advantage of such filters is that they can be used in places

    where access to a power supply is not available (e.g., inside a stereospeaker to separate the audio into bass and treble before sending it to thewoofer & tweeter).

    Active: These filters use op amps (and/or transistors) together with resistors,capacitors, and inductors.• Allows filters to be designed without inductors• Op amp characteristics enable design by cascading several “stages”

    Heavy, Bulky,

    Expensive

    Large Input Impedance• Small Output Impedance

  • 8/17/2019 CT Filters - Passive

    6/18

    6/18

    “First-Order” Lowpass Filter: RC Circuit

    We already analyzed this

    filter using phasor ideas…

    but we’ll take another look

    here.

     R

    1/Cs

    ( )Y s

    ( ) X s

    To analyze this filter in the s-domain:• Replace input and output by their LT symbols• Replace components by their s-domain impedances• Solve for output Y (s) in terms of input X (s)… the thing that multiplies X (s)

    is the TF H (s)

    By voltage divider (the best approach here) we get this

    1( ) ( )

    1

    CsY s X s

    Cs R

    1( )1

    Cs H sCs R

    1 1( )

    1 1

     RC  H s

     RCs s RC 

    1 Pole @s = -1/  RC    j

     1 RC 

     RC   RC 

    1st Order

    1( ) 1

     RC  H s s RC 

  • 8/17/2019 CT Filters - Passive

    7/18

    7/18

    1 1( )

    1 1

     RC  H s

     RCs s RC 

      j

     1 c RC     

     RC  

     RC 

    1( )

    1 H 

     jRC  

     

    2 2

    1( )

    1 H 

     RC  

     

    When =1 then

    Magn is 1 2 ( 3dB)

     RC  

    So… c = 1/ RC  ( )  c

    c

     H ss

      

      j

     100

      j

     1000

    101

    102

    103

    104

    105-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    CT Frequency  (rad/sec)

        |    H   (       )    |    (   d   B

       )

    100 rad/secc

      

    1000 rad/secc  

    >> w=logspace(1,5,1000);>> wc=100;H=freqs(wc,[1 wc],w);>> semilogx(w,20*log10(abs(H)))

  • 8/17/2019 CT Filters - Passive

    8/18

    8/18

    “First-Order” Highpass Filter: RC Circuit

    1/Cs

     R

    ( )Y s( ) X s

    By voltage divider (the best approach here) we get this

    ( ) ( )1

     RY s X s

    Cs R

    ( )1

     R H s

    Cs R

    ( )1 1

     RCs s H s

     RCs s RC 

    1 Pole @

    s = -1/  RC 

    1 Zero @

    s = 0     j

     1 RC 

     RC   RC 

    1st Order

    ( )

    1

    s H s

    s RC 

  • 8/17/2019 CT Filters - Passive

    9/18

    9/18

    ( )1 1

     RCs s H s

     RCs s RC 

    ( )

    1

     jRC  H 

     jRC 

      

     

    2 2

    ( )1

     RC  H 

     RC 

      

     

    When =1 then

    Magn is 1 2 ( 3dB)

     RC  

    So… c = 1/ RC  ( )c

    s H ss    

      j

     1 c RC     

     RC  

     RC 

      j

     10,000

      j

     1000>> w=logspace(1,5,1000);>> wc=1000;H=freqs([1 0],[1 wc],w);>> semilogx(w,20*log10(abs(H)))

    101

    102

    103

    104

    105-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    CT Frequency  (rad/sec)

        |    H   (       )    |    (   d   B

       )

    10,000 rad/secc

      

    1000 rad/secc  

  • 8/17/2019 CT Filters - Passive

    10/18

    10/18

    Lowpass Filter Highpass Filter

    1( )

    1 H 

     jRC  

     

    ( )   c

    c

     H ss

     

     

    ( )

    c

    s H s

    s    

    ( )

    1

     jRC  H 

     jRC 

      

     

    At high freqs… C is like a short…

    Stops high frequencies!!

    At low freqs… C is like an open…

    Stops low frequencies!!

      j

     1 c RC     

     RC   RC 

      j

     1 c RC     

     RC   RC 

    101

    102

    103

    104

    105-60

    -50

    -40

    -30

    -20

    -100

    10

    CT Frequency  (rad/sec)

        |    H   (       )    |    (   d   B   )

    101

    102

    103

    104

    105-60

    -50

    -40

    -30

    -20

    -100

    10

    CT Frequency  (rad/sec)

        |    H   (       )    |    (   d   B   )

  • 8/17/2019 CT Filters - Passive

    11/18

    11/18

    A “Second-Order” Lowpass Filter: RLC Circuit

    By voltage divider (the best approach here) we get this:

    1( )

    1

    Cs H s

    Cs Ls R

      21

    ( )1

     LC  H s

    s R L s LC  

    2 Poles

    (3 Possible Ways)2nd Order

    1

    ( ) ( )1

    Cs

    Y s X sCs Ls R

      j

     

    Distinct “Real” Poles

      j

     

    2 poles

    Repeated “Real” Poles

      j

     

    Complex-Conjugate Poles

    1n

     LC    

    Natural Freq.

    2

    2 2( )

    2n

    n n

     H ss s

     

     

    2

     R

     L  

    Damping Ratio

  • 8/17/2019 CT Filters - Passive

    12/18

    12/18

    2

    1,2 2 2 1 p R L R L LC  The poles are the roots of  s2 + ( R /  L) s + 1/  LC :

    2R 1

    2L   LC 

    Complex Roots

    1,2 02

     R

     p j L  

    2

    0 2

    1

     

     

     

     

     L

     R

     LC  

      j

     

    2

    2

      

     

     L

     R

     LC 

    2

    2

    1

     

     

     

     

     L

     R

     LC 

     L R 2/

    20

      L R

     LC 

    When  R = 0, poles

    are on   j 

    axis

    0 1 

    2R 1

    2L   LC 

    Repeated Real Roots

    1,22

     R p

     L

    2 L R

     LC 

      j

     

    (2 poles)1  

    2R 12L   LC 

    Distinct Real Roots

    2 L R LC 

      j

     

    1  

  • 8/17/2019 CT Filters - Passive

    13/18

    13/18

     

     j 

     R = 0

     R = 0

     LC 

     L R

    2

    Pole Positions as R is Varied 

    Repeated

    Roots

     LC 

     L R

    20  

     LC 

     L R

    20  

     LC 

     L R

    2

     LC  L R 2

    0 1 

    0  

    0  

    0 1 

    1  

    1  

    1  

  • 8/17/2019 CT Filters - Passive

    14/18

    14/18

    -3 -2 -1 0 1

    x 104

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    x 104

    101

    102

    103

    104

    105

    -60

    -40

    -20

    0

    20

    CT Frequency  (rad/sec)

        |    H   (       )

        |    (   d   B   )

    –500 + j49,749

    –500 – j49,749

    Freq Resp Magnitude for Three Cases

    Complex Poles (1)

    Two Breaks @ “Poles”• -20 dB/dec then -40 dB/dec

    –5000

    –5000

    –858

    –29,142

    2nd Order has faster rolloff vs 1st Order

    (-40 dB/dec vs. -20 dB/dec)

  • 8/17/2019 CT Filters - Passive

    15/18

    15/18

    A “Second-Order” Highpass Filter: RLC Circuit

    By voltage divider (the best approach here) we get this:

    ( )1

     Ls H s

    Cs Ls R

     

    2

    2( )

    1

    s H s

    s R L s LC  

    2 Poles

    (3 Possible Ways)2nd Order

    ( ) ( )1

     Ls

    Y s X sCs Ls R

    1n

     LC    

    Natural Freq.

    2

    2 2( )

    2n n

    s H s

    s s  

    2

     R

     L  

    Damping Ratio

    2 Zeros @ Origin

    Same

    Denominator!!

      j

     

    Complex-Conjugate Poles

    2

      j

     

    2 poles

    Repeated “Real” Poles

    2

      j

     

    Distinct “Real” Poles

    2

  • 8/17/2019 CT Filters - Passive

    16/18

    16/18

    101

    102

    103

    104

    105

    -100

    -80

    -60

    -40

    -20

    0

    20

    CT Frequency  (rad/sec)

        |    H   (

           )    |    (   d   B   )

    11000 rad/sec

    n LC 

      

    –172–5828

    0.1  

    1   3  

    –1000–1000

    –100+  j995

    –100-  j995

    2nd Order has faster rolloff vs 1st Order

    (-40 dB/dec vs. -20 dB/dec)

    What we are seeing is that we get 20 dB of slope for each order!!!

    (For LPF and HPF… But see next for BPF…)

    So a 3rd Order LPF would (eventually) rolloff at -60 dB/decade!!!

    So… the main advantage of higher order filters is that your stop

    band is better due to the faster rolloff!!

  • 8/17/2019 CT Filters - Passive

    17/18

    17/18

    A “Second-Order” Bandpass Filter: RLC Circuit

    By voltage divider (the best approach here) we get this:

    ( )1

     R H s

    Cs Ls R

    2

    ( )1

     R L s H s

    s R L s LC  

    2 Poles(3 Possible Ways)

    2nd Order

    ( ) ( )1

     R

    Y s X sCs Ls R

    1n

     LC    

    Natural Freq.

    2 2

    2( )

    2n

    n n

    s H s

    s s

     

     

    2

     R

     L  

    Damping Ratio

    1 Zero @ Origin

    Same

    Denominator!!

      j

     

    Complex-Conjugate Poles

      j

     

    2 poles

    Repeated “Real” Poles

      j

     

    Distinct “Real” Poles

    v(t )   RC  y(t ) Output SignalInput Signal  

     L

  • 8/17/2019 CT Filters - Passive

    18/18

    18/18

    101

    102

    103

    104

    105

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    CT Frequency  (rad/sec)

        |    H   (       )    |    (   d   B   )

    11000 rad/sec

    n LC 

      

    –172

    –5828

    0.1  

    1  

    3  

    –1000

    –1000

    –100+  j995–100-  j995

    Note: All slopes are 20 dB/decade!

    So… unlike for LPF & HPF… 2nd Order

    BPF does NOT have the faster rolloff…

    But, 1st

    Order can’t even GIVE a BPF!!!

    What is happening is that the second order gives you two 20 dB/dec

    slopes “available”…

    But for a BPF you need one going up and one going down… so

    each only gets one of the two 20 dB slopes!