• date post

28-Mar-2015
• Category

## Documents

• view

249

3

TAGS:

Embed Size (px)

### Transcript of Chapter 11 Filters and Tuned Amplifiers Passive LC Filters Inductorless Filters Active-RC Filters...

• Slide 1

Chapter 11 Filters and Tuned Amplifiers Passive LC Filters Inductorless Filters Active-RC Filters Switched Capacitors Slide 2 Filter Transmission, Types and Specification Linear Filters Slide 3 Specification of the transmission characteristics of a low- pass filter. The magnitude response of a filter that just meets specifications is also shown. Filter Specification Frequency-Selection function Passing Stopping Pass-Band Low-Pass High-Pass Band-Pass Band-Stop Band-Reject Summary Low-pass specs -the passband edge, wp -the maximum allowed variation in passband, Amax -the stopband edge, ws -the minimum required stopband attenuation, Amin Passband ripple Ripple bandwidth Slide 4 Transmission specifications for a bandpass filter. The magnitude response of a filter that just meets specifications is also shown. Note that this particular filter has a monotonically decreasing transmission in the passband on both sides of the peak frequency. Filter Specification Slide 5 Exercises 11.1 and 11.2 Slide 6 Pole-zero pattern for the low-pass filter whose transmission is shown. This filter is of the fifth order (N = 5.) The Filter Transfer Function Slide 7 Pole-zero pattern for the bandpass filter whose transmission is shown. This filter is of the sixth order (N = 6.) The Filter Transfer Function Slide 8 The magnitude response of a Butterworth filter. Butterworth Filters Slide 9 Magnitude response for Butterworth filters of various order with = 1. Note that as the order increases, the response approaches the ideal brickwall type transmission. Butterworth Filters Slide 10 Graphical construction for determining the poles of a Butterworth filter of order N. All the poles lie in the left half of the s-plane on a circle of radius 0 = p (1/ ) 1/N, where is the passband deviation parameter : (a) the general case, (b) N = 2, (c) N = 3, (d) N = 4. Butterworth Filters Slide 11 Sketches of the transmission characteristics of a representative even- and odd- order Chebyshev filters. Chebyshev Filters Slide 12 First-Order Filter Functions Slide 13 Slide 14 Fig. 11.14 First-order all-pass filter. First-Order Filter Functions Slide 15 Second-Order Filter Functions Slide 16 Slide 17 Slide 18 Realization of various second-order filter functions using the LCR resonator of Fig. 11.17(b): (a) general structure, (b) LP, (c) HP, (d) BP, (e) notch at 0, (f) general notch, (g) LPN ( n 0 ), (h) LPN as s, (i) HPN ( n < 0 ). The Second-order LCR Resonator Slide 19 The Antoniou inductance-simulation circuit. (b) Analysis of the circuit assuming ideal op amps. The order of the analysis steps is indicated by the circled numbers. The Second-Order Active Filter Inductor Replacement Slide 20 The Antoniou inductance-simulation circuit. Analysis of the circuit assuming ideal op amps. The order of the analysis steps is indicated by the circled numbers. The Second-Order Active Filter Inductor Replacement Slide 21 Realizations for the various second-order filter functions using the op amp-RC resonator of Fig. 11.21 (b). (a) LP; (b) HP; (c) BP, (d) notch at 0 ; The Second-Order Active Filter Inductor Replacement Slide 22 (e) LPN, n 0 ; (f) HPN, n 0 ; (g) all-pass. The circuits are based on the LCR circuits in Fig. 11.18. Design equations are given in Table 11.1. The Second-Order Active Filter Inductor Replacement Slide 23 The Second-Order Active Filter Two-Integrator-Loop Slide 24 Circuit Implementation Slide 25 The Second-Order Active Filter Two-Integrator-Loop Circuit Design and Performance Slide 26 The Second-Order Active Filter Two-Integrator-Loop Exercise 11.21 Slide 27 Derivation of an alternative two-integrator-loop biquad in which all op amps are used in a single-ended fashion. The resulting circuit in (b) is known as the Tow-Thomas biquad. The Second-Order Active Filter Two-Integrator-Loop Slide 28 Fig. 11.26 The Tow-Thomas biquad with feedforward. The transfer function of Eq. (11.68) is realized by feeding the input signal through appropriate components to the inputs of the three op amps. This circuit can realize all special second-order functions. The design equations are given in Table 11.2. Slide 29 Fig. 11.37 A two-integrator-loop active-RC biquad and its switched-capacitor counterpart. Slide 30 Fig. 11.47 Obtaining a second-order narrow-band bandpass filter by transforming a first-order low-pass filter. (a) Pole of the first-order filter in the p-plane. (b) Applying the transformation s = p + j 0 and adding a complex conjugate pole results in the poles of the second-order bandpass filter. (c) Magnitude response of the firs-order low-pass filter. (d) Magnitude response of the second-order bandpass filter. Slide 31 Fig. 11.48 Obtaining the poles and the frequency response of a fourth-order stagger-tuned narrow-band bandpass amplifier by transforming a second-order low-pass maximally flat response.