By: Prof. Y. Peter Chiu

35
1 By: Prof. Y. Pe ter Chiu MRP & JIT ~ HOMEWORK SOLUTION ~

description

MRP & JIT ~ HOMEWORK SOLUTION ~. By: Prof. Y. Peter Chiu. What is the MRP Calculations for the slide assemblies ? ( 3 slide assemblies for each valve casing ). Lead Time = 2 weeks. Assume On-hand inventory of 270 slide assemblies at the end of week - PowerPoint PPT Presentation

Transcript of By: Prof. Y. Peter Chiu

Page 1: By: Prof. Y. Peter Chiu

1 By: Prof. Y. Peter Chiu

MRP & JIT~ HOMEWORK SOLUTION ~

Page 2: By: Prof. Y. Peter Chiu

2

What is the MRP Calculations for the slide assemblies ? ( 3 slide assemblies for each valve casing )

Lead Time = 2 weeks Assume On-hand inventory of 270 slide assemblies at the end of week 3 & Scheduled receipts of 78 & 63 at the beginning of week 5 & 7

Solution to MRP Calculations for the slide assemblies

Week

Gross Requirements

Scheduled Receipts

On-hand inventory

Net RequirementsTime-Phased Net Requirements

Planned Order Release (lot for lot)

2 3 4 5 6 7 8 9 10 11 12 13

126 126 96 36 78 336 135 42 228 114

78 63

270 144 96 0 27

0 0 0 0 51 336 135 42 228 114

51 336 135 42 228 114

51 336 135 42 228 114

Page 3: By: Prof. Y. Peter Chiu

3

#4 (a) MPS for the computersweek 1 2 3 4 5 6 7 8 9 10 11

Gross requirements 220 165 180 120 75 300

Scheduled receipts 30 10

On-hand inventory 75

(a)Net requirements-MPS 145 165 150 120 65 300

MRP:Mother board (3 weeks, 1)Gross requirements 145 165 150 120 65 300

Net requirements 145 165 150 120 65 300

Time phased net reqt. 145 165 150 120 65 300

(b) Planned Order Rel. 145 165 150 120 65 300

Disk drivers: outside orders schedule (1 week, 2)Gross requirements 290 330 300 240 130 600

Net requirements 290 330 300 240 130 600

Time phased net reqt. 290 330 300 240 130 600

(c)Planned order release 290 330 300 240 130 600

Page 4: By: Prof. Y. Peter Chiu

4

#5MRP: DRAM Chips [Devired from Motherboard 6-4 (b)] (2weeks, 90)

1 2 3 4 5 6 7 8145 165 150 120 65 300

Gross Reqts. (x 90) 13050 14850 13500 10800 5850 27000

Scheduled Recipts 3000

On-Hand Inv 23000

Net Reqts 0 1900 13500 10800 5850 27000

Time-phased net reqt. 0 1900 13500 10800 5850 27000

(a) Planned Order

Release (VendorA) 1900 10000 10000 5850 10000

Release (VendorB) 0 3500 800 0 17000

(b) Planned order release (A)2066 10000 10000 6359 10000

Vendor A 92%(yield) 9200 9200 9200

Vendor B 96%(yield) 0 4300 1600 0 17800 (yield)

Planned rorder release (B) 0 4480 1667 0 18542

Page 5: By: Prof. Y. Peter Chiu

5

#6(a) POR for component A

6 7 8 9 10 11 12 13 14 15 16 17Gross Reqts. 200 200 80 80 200 400 400 400Net Reqts 200 200 80 80 200 400 400 400Time-phased net reqt. 200 200 80 80 200 400 400 400for component A Planned order release 200 200 80 80 200 400 400 400(b) POR for component B (2 weeks, 1)Gross Reqts. 100 100 40 40 100 200 200 200Net Reqts 100 100 40 40 100 200 200 200Time-phased net reqt. 100 100 40 40 100 200 200 200P.O.R 100 100 40 40 100 200 200 200(c) POR for Component C (2 weeks, 1*A+2*B)Gross Reqts. For A 200 200 80 80 200 400 400 400Gross Repts. For B 200 200 80 80 200 400 400 400Net Reqts A+B 200 400 280 160 280 600 800 800 400Time-phased net reqt. 200 400 280 160 280 600 800 800 400POR for C 200 400 280 160 280 600 800 800 400

Page 6: By: Prof. Y. Peter Chiu

6

# 9

(b)

Week

MPS-end item

Component B (P.O.R)

Component F

-Net. Req.

Time Phased Net. Req.

Ans. →Planned Order Release

27 28 29 30 31 32 33 34 35

165 180 300 220 200 240

330 360 600 440 400 480

330 360 600 440 400 480

330 360 600 440 400 480

330 360 600 440 400 480

Page 7: By: Prof. Y. Peter Chiu

7

# 9(c) Week

MPS-end item

P.O.R –Comp. B

Net Req. –Comp. ETime Phased –Net Req.P.O.R – Comp. E

P.O.R –Comp. GTime Phased –Net Req.Net Req. –Comp. G

Net Req. –Comp. I

Net Req. –Comp. H

Time Phased –Net Req.

Time Phased –Net Req.

Ans. → P.O.R –Comp. I

Ans. → P.O.R –comp. H

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

165 180 300 220 200 240

330 360 600 440 400 480

330 360 600 440 400 480

330 360 600 440 400 480

330 360 600 440 400 480

660 720 1200 880 800 960

660 720 1200 880 800 960

660 720 1200 880 800 960

660 720 1200 880 800 960

660 720 1200 880 800 960

660 720 1200 880 800 960

1980 2160 3600 2640 2400 2880

1980 2160 36002640 2400 2880

1980 2160 36002640 2400 2880

(d)

Page 8: By: Prof. Y. Peter Chiu

8

Month

Demand

1 2 3 4 5 6 7 8 9 10 11 12

6 12 4 8 15 25 20 5 10 20 5 12

Current Inventory : 4 An ending Inventory should be : 8 h = $ 1 k = $ 40

Month

Net. Demand

# 14

1 2 3 4 5 6 7 8 9 10 11 12

2 12 4 8 15 25 20 5 10 20 5 20

• Starting in Period 1 : C(1) = 40

C(2) = (40+12)/2 = 26

C(3) = [40+12+2(4)] /3 = 20

C(4) = [40+12+2(4)+3(8)] /4= 21 <stop>

1841221 y∴

(a) Silver-Meal

Page 9: By: Prof. Y. Peter Chiu

9

• Starting in Period 4 :

231584 y∴

• Starting in Period 9 :

• Starting in Period 6 :

C(1) = 40

C(2) = [40+15]/2 = 27.5

C(3) = [40+15+2(25)] /3 = 35 <stop>

C(1) = 40

C(2) = [40+20]/2 = 30

C(3) = [40+20+2(5)] /3 = 23.3

C(4) = [40+20+2(5)+3(10)] /4 = 25 <stop>

C(1) = 40

C(2) = [40+20]/2 = 30

C(3) = [40+20+2(5)] /3 =23.3

C(4) = [40+20+2(5)+3(20)] /4 = 32.5 <stop>

35520109 y

50520256 y∴

∴∴ 2012 y

∴ Using Silver- Meal ; y = [ 18 , 0 , 0 , 23 , 0 , 50 , 0 , 0 , 35 , 0 , 0 , 20 ]

# 14 (a) Silver-Meal

Page 10: By: Prof. Y. Peter Chiu

10

C(1) = 40 /2 = 20

C(2) = 52 /14 = 3.71

C(3) = 60 /18 = 3.33

C(4) = 84 /26 = 3.23

C(5) = (84+60) /41 = 3.51 <stop>

(b) LUC

• Starting in Period 1 :

• Starting in Period 7 :

• Starting in Period 5 :

C(1) = 40 /20 = 2

C(2) = (40+5) /25 = 1.80

C(3) = [40+5+2(10)] /35 = 1.86 <stop>

C(1) = 40 /15 = 2.67

C(2) = 65 /40 = 1.63

C(3) = [65+2(20)] /60 = 1.75 <stop>

261 y

257 y

405 y

# 14

Page 11: By: Prof. Y. Peter Chiu

11

(C) PPB

• Starting in Period 1 : Period Holding cost

234

1* (12) = 1212+2(4) = 2020+3(8) = 44

Closer to period 4

K = $40

26841221 y∴

• Starting in Period 9 : C(1) = 40 /10 = 4

C(2) = 60 /30 = 2

C(3) = [60+2(5)] /35 = 2

C(4) = [70+60] /55 = 2.36 <stop>

2012 y359 y

∴ Using LUC ; y = [ 26 , 0 , 0 , 0 ,40 , 0 , 25 , 0 , 35 , 0 , 0 , 20 ]∴∴

(b) LUC# 14

Page 12: By: Prof. Y. Peter Chiu

12

• Starting in Period 5 : Period Holding cost

123

0 2525+2(20) = 65

Closer to period 2

35105207 y

• Starting in Period 7 :

• Starting in Period 10 :23

Period Holding cost

55+2(12) = 29

Period Holding cost

234

5 5+2(10) = 2525+3(20) = 85

Closer to period 3

4025155 y

452052010 y∴

∴ Using PPB ; y = [ 26 , 0 , 0 , 0 ,40 , 0 , 35 , 0 , 0 , 45 , 0 , 0 ]

(C) PPB

K = $40

K = $40

K = $40

Page 13: By: Prof. Y. Peter Chiu

13

SM

LUC

PPB

Demand

Inv. SM

Inv. LUC

Inv. PPB

1 2 3 4 5 6 7 8 9 10 11 12

18 0 0 23 0 50 0 0 35 0 0 20

26 0 0 0 40 0 25 0 35 0 0 20

26 0 0 0 40 0 35 0 0 45 0 0

2 12 4 8 15 25 20 5 10 20 5 20

16 4 0 15 0 25 5 0 25 5 0 0

24 12 8 0 25 0 5 0 25 5 0 0

24 12 8 0 25 0 15 10 0 25 20 0

Σ = 95

Σ = 104

Σ = 139

Cost of S.M. ($40*5)+($1*95) = $295

Cost of LUC ($40*5)+($1*104) = $304

Cost of PPB ($40*4)+($1*139) = $299

∴ Silver Meal Method is the least expensive one !

# 14 (d)

Page 14: By: Prof. Y. Peter Chiu

14

#17 K=200; h=0.3

Week 1 2 3 4 5 6Time-phased net reqts335 200 140 440 300 200(a) EOQ 599 0 599 0 599 0

Ending Inventory 264 64 523 83 382 182

(b) S-M 675 0 0 940 0 0

Ending Inventory 340 140 0 500 200 0

2( ) 599

ka EOQ

h

( )

(1) 200

(2) [200 (0.3)200]/ 2 130

(3) [200 (0.3)(200) 2(0.3)(140)] / 3 114.7

(4) [200 60 84 3(0.3)(440)] / 4 185

4

(1) 200

(2) [200 (0.3)(300)] / 2 145

(3) [200 90 2(0.3)(200)] / 3 136.7

( )

b

c

c

c

c

Start Week

c

c

top

c

S

He

1 1 2 3

54 4 6

y 675

940

r r rnce

y r r r

Page 15: By: Prof. Y. Peter Chiu

15

#17

5

1 3 5

Starting Week 5

200(1) 0.667

300200 60

(2) 0

300 200 500

535 ; 580 ; 50

.520300 200

0

y

Hence y y

c

y

c

1

2

1 2

200(1) 0.597

335

260 (2) 0.486

535

200 60 2(0.3)140 (3) 0.509

335 200 140Start Week 3

200(1) 1.

( ) LUC

( )

4286140200 132

(2) 0.572140 440

kc

r

k hrc

r r

c

c

S

c

c

top

1 3

4

200 132 180(3) 0

335 200 535 y 140 440 58

.582( )140 440 300

0

c Stop

y

O

(

r

)

d

er

Part

ing

-Period

Comparing

Holdi

setup cost ($200)

ng

Horizo

to Holding c

n Costs

_______

____

osts

_____

__

__

__

d

1 0

2 60

3 60+84=144

4 144+396=540

_____________

*

______

1 21

______

Starting week 4

1 0

2 90

3 90+120=210

________________

*

__

y

________

r r 3

4 5 64

675

y 940

r

r r r

Page 16: By: Prof. Y. Peter Chiu

16

#17Week 1 2 3 4 5 6Time-phased net reqts 335 200 140 440 300 200(a) EOQ 599 0 599 0 599 0

Ending Inventory 264 64 523 83 382 182(b) S-M 675 0 0 940 0 0

Ending Inventory 340 140 0 500 200 0

(c) LUC 535 0 580 0 500 0

Ending Inventory 200 0 440 0 200 0(d) Part-Period 675 0 0 940 0 0

Ending Inventory 340 140 0 500 200 0

( ) : ($200*3) + (0.3)

(264+64+523+83+382+182) =

( ) S-M : ($200*2) + (0.3)

:

$200*6=

(340+1

$1049.4

$740+500+200) =

$1

( ) L

20

54

0

UC :

Lot for

a EOQ

b

L t

c

o

($200*3) + (0.3)(840) =

( ) Part-Period : the same as S-M =

$852

$754d

Page 17: By: Prof. Y. Peter Chiu

17

#18

4 1 3

(1)(1,1,1,1) (23,86,40,21) $1200

(2)(1,1,1,0) (23,86,52,0) $900+3(12)=$936

(3)(1,1,0,1) (23,126,0,12) $900

$300; $3 (23

+3(40)=$1020

(4)(1,

(

,86,40,12

1,0,0) (23,138,0,0)

) 2

$600+3(

2

)

8

k

a

h r

52+12)=$792

(5)(1,0,1,1) (109,0,40,12) $900+3(86)=$1158

(6)(1,0,1,0) (109,0,52,0) $600+3(86+12)=$894

(7)(1,0,0,1) (149,0,0,12) $600+3(126+40)=$1098

(8)(1,0,0,0) (161,0,0,0) $300+3(138+52+12)=$906

Hence

the optimal costs = $792 (23,138,0,0)

Page 18: By: Prof. Y. Peter Chiu

18

#18 (cont’d)

4

33 4

3 43

22 3

32 2 4

42

11 2

21

1

300

300 300 600min

300 3(12)

300 336 636

mi

$300; $3 (23,86,40,12)

( )

336#

492#

79

n 300 3(40) 300 720

300 3(40 24)

300 492

min

2#

k h r

C

C CC

C

C C

C C C

C

C C

C

b

CC 3

31 4

1 2 2 3 4

41

300 3(86) 336 894

300 3(86 80) 300 1098

300 3(86 80 3

y 23; 138

Hence the optimal cost $792

6) 906

y r r r

C C

C

Page 19: By: Prof. Y. Peter Chiu

19

h = $0.4 K = $180

Starting Inventory Week 6 is 75 Receiving: 30 & 10 in week 8 & 10

# 24

Week

Net Demand

Demand

6 7 8 9 10 11

220 165 180 120 75 300

145 165 150 120 65 300

(a) PPB :

• Starting in Period 1 :

• Starting in Period 4 : Holding costs

Holding costsWeek

Period

123

0 165*0.4= 66 66+2(0.4)(150)= 186

Closer to period 34601501651451 y

485300651204 y∴

123

0 65*0.4= 26 26+2(300)(0.4)= 266

Closer to period 3

K = $180

K = $180

Page 20: By: Prof. Y. Peter Chiu

20

# 24

MRP - Mother Boards

Week

Net. Req.

Time-Phased Net Req.

P.O.R. (lot-for-lot)

Ans. → ( PPB ) P.O.R

For DRAMAns. → Gross Req.

For DRAMTime-Phased Net Req.For DRAM P.O.R.

1 2 3 4 5 6 7 8 9 10 11

145 165 150 120 65 300

145 165 150 120 65 300

145 165 150 120 65 300

460 0 0 485 0 0

41,400 0 0 43,650 0 0

41,400 0 0 43,650 0 0

41,400 0 0 43,650 0 0

Page 21: By: Prof. Y. Peter Chiu

21

#25Week 8 9 10 11 12 13 14 15 16 17End Products 100 100 40 40 100 200 200 200L-F-L Planned OrderRelease ~ A 200 200 80 80 200 400 400 400S-M (A) 560 0 0 0 600 0 800 0L-F-L Planne OrderRelease ~ B 100 100 40 40 100 200 200 200S-M (B) 280 0 0 0 300 0 400 0Gross Reqts. ( C)C=(1*A+2*B) 560 560 0 0 600 600 800 800 0Gross Reqts. ( D)D=2*A 1120 0 0 0 1200 0 1600 0Gross Reqts. (E)E=3*B 840 0 0 0 900 0 1200 0 0

Page 22: By: Prof. Y. Peter Chiu

22

#25 (cont’d)

1 1 2 3 4

(1) 100

(2) (100 30) / 2 65

(3) (100 30 24) / 3 51.33

(4) (100 30 24 36) / 4 47

: K=100, h=0.15

(

.5

(5) (100 30 24 36 60) / 5 50

(1) 100

(2) (100 60) / 2 80

(3) (1

)

56

0

0

0 60 120) /

S M A

Stop

y r

S M

c

c

c

c

c

c

c

r r r

c

5 5 6

7 7 8

3 93

(1) 100

(2) (100 60)

( )

200 400 600

400 40

/ 2

0 8 0

80

0

c

Stop

y r r

y r

c

r

1 1 2 3 4

5 5 6

7 7 8

(1) 100

(2) (100 25) / 2 62.5

(3) (100 25 20) / 3 48.3

(4) (145 30) / 4 43.75

(5) 43.75

(1) 100

(2) 1

: K=100, h=0.25

( )

280

( )

1

50 / 2 75

(3

00 200 300

20

0

) 75

c

S M B

Stop

y r r r r

Stop

c

c

c

c

c

c

y r r

y r r

c

200 400

Page 23: By: Prof. Y. Peter Chiu

23

#28(a) K=$200 ; h=$0.30r 335 200 140 440 300 200Capacity 600 600 600 400 200 200 335 200 140 400 200 200 180 280 r' 335 200 280 400 200 200 Initial Solution 1,272

Excess 265 400 320 0 0 0

320 1200 0 0

r'' 335 280 600 400 0 0 1,196535 0 480 400 200 0 1,112

Cost =4*200+(0.3)(80+540+500+200)=$1196

r'' 535 0 480 400 0 200 1,052Week 2 -> Week 1 : 200 units

0.3*200 = $60

Cost =4*200+(0.3)(200+340+300)=$1052

Page 24: By: Prof. Y. Peter Chiu

24

#28(b)

17(b) S-M: ($1052 - $754) / ($754) = 40 %17(c) LUC: ($1052 - $852) / ($852) = 23 %17(d) PPB: ($1052 - $754) / ($754) = 40 %

Page 25: By: Prof. Y. Peter Chiu

25

# CW.3# CW.3 Consider the example presented previously for the scheduling of the valve casing assembly. Suppose that the production capacity in any week is 50 valve casings. Determine the feasible planned order release for the valve casings. Recall that the time phased net requirements for the valve casings as followed:

Week

Net Requirements

Time-Phased Net

Requirements r =

4 5 6 7 8 9 10 11 12 13 14 15 16 17

42 42 32 12 26 112 45 14 76 38

42 42 32 12 26 112 45 14 76 38

Production c=Capacity

50 50 50 50 50 50 50 50 50 50

Page 26: By: Prof. Y. Peter Chiu

26

Week

Net Requirements

Time-Phased Net

Requirements r =

4 5 6 7 8 9 10 11 12 13 14 15 16 17

42 42 32 12 26 112 45 14 76 38

42 42 32 12 26 112 45 14 76 38

Production c=Capacity

# CW.3# CW.3

excess (c-r) =Capacity

8 8 18 38 24 (62) 5 36 (26) 12

(c-r)’ =

[2] Lot-shifting technique (back-shift demand from rj > cj):

50 50 50 50 50 50 50 50 50 50

8 8 18 38 24 (62) 5 36 (26) 12

8 8 18 0 0 0 5 10 0 12 (c-r)’ =

final r ’ = 42 42 32 50 50 50 45 40 50 38

1 1

1,2, ,j j

i ii i

C for j n

[1]First test for: It is okay!

Page 27: By: Prof. Y. Peter Chiu

27

# CW.4 # CW.4 ( continues on #CW.3)( continues on #CW.3)

Suppose that with overtime work on 2nd shifts, the company could increase the weekly production capacity to 120 valve casings, however, extra cost per week = $105. Where K=$100, is the regular setup cost. The holding cost per valve casing per week is estimated to be $0.65. Determine the optimal production plan.Determine the optimal production plan.

Time-Phased Net

Requirements r =42 42 32 12 26 112 45 14 76 38

Production c=Capacity

50 50 50 50 50 50 50 50 50 50

Week 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Production c=Capacity (O-T)

120 120 120 120 120 120 120 120 120 120

Page 28: By: Prof. Y. Peter Chiu

28

# CW.4 # CW.4 ( continues on #CW.3)( continues on #CW.3)

Suppose that with overtime work on 2nd shifts, the company could increase the weekly production capacity to 120 valve casings, however, extra cost per week = $105. Where K=$100, is the regular setup cost. The holding cost per valve casing per week is estimated to be $0.65. Determine the optimal production plan.Determine the optimal production plan.

Time-Phased Net

Requirements r =42 42 32 12 26 112 45 14 76 38

Production c=Capacity

50 50 50 50 50 50 50 50 50 50

final r ’ = 42 42 32 50 50 50 45 40 50 38 (using regular shift)

Week 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 38 62 0 0 26 0 0 Σ= 126 Ending Inventories =

Page 29: By: Prof. Y. Peter Chiu

29

Time-Phased Net

Requirements r =42 42 32 12 26 112 45 14 76 38

Production c=Capacity (O-T)

excess (c-r) =Capacity

120 120 120 120 120 120 120 120 120 120

Week 4 5 6 7 8 9 10 11 12 13 14 15 16 17

# CW.4# CW.4[1] First, the cost for using regular shift is $100(10) + $0.65 (126)

= $1,081.9 [ lot for lot ][ lot for lot ]

78 78 88 108 94 8 75 106 44 82

42 42 32 12 26 112 45 14 76 38r = 78 78 88 108 94 8 75 106 44 excess (c-r)’=

Capacity 35 77 0 31 43 0 6

42 42 32 12 26 112 45 14 76 38

85 43 120 89 77 120 59 0 114 0

0 0 0 0

85 0 120 0 0 120 0 0 114 0 final r ’ =

Page 30: By: Prof. Y. Peter Chiu

30

# CW.4# CW.4

Time-Phased Net

Requirements r =42 42 32 12 26 112 45 14 76 38

Week 4 5 6 7 8 9 10 11 12 13 14 15 16 17

85 0 120 0 0 120 0 0 114 0 final r ’ =

[2] The cost for using Overtime shift is $205(4) + $0.65(372) = $1061.8

43 1 89 77 51 59 14 0 38 0 Ending Inventories =

Less than the cost for using regular shift $1,081.9, Saved $ 20.10

Page 31: By: Prof. Y. Peter Chiu

31

# CW.4# CW.4

Ending Inventories =

[3] To think about the following solution:

Time-Phased Net

Requirements r =42 42 32 12 26 112 45 14 76 38

Week 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Suppose r ’=

74 32 0 38 62 0 0 26 0 0 Σ= 232

116 0 0 50 50 50 45 40 50 38 [ One OT, 7 regular ]

The cost for using only one Overtime shift on week 4

is $205(1) + $100(7) + $0.65(232) = $1055.8

Less than the cost for using regular shift $1,081.9, Saved $ 26.1Less than the cost for using all Overtime shift $1061.8 Saved $ 6.0

WHY ?

Page 32: By: Prof. Y. Peter Chiu

32

# CW.4# CW.4

Ending Inventories =

[4] A Better Solution :

Time-Phased Net

Requirements r =42 42 32 12 26 112 45 14 76 38

Week 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Suppose r ’=

74 32 0 27 1 9 14 0 38 0 Σ= 195

116 0 0 39 0 120 50 0 114 0

The cost for using the above solution

is $205 (3) + $100 (2) + $0.65(195) = $ 941.75

Less than the cost for using regular shift $1,081.9, Saved $ 140.05

Wow !

Page 33: By: Prof. Y. Peter Chiu

33

#33Week 6 7 8 9 10 11 12 13 14 15 16POR A 200 200 80 80 200 400 400 400POR B 100 100 40 40 100 200 200 200POR C 200 400 280 100 280 600 800 800 400A(0.84) 239 239 96 96 239 477 477 477B(0.92) 109 109 44 44 109 218 218 218C(0.70) 286 572 400 143 400 858 1143 1143 572

Page 34: By: Prof. Y. Peter Chiu

34

The EndThe End

Page 35: By: Prof. Y. Peter Chiu

35

End Item

A(2)1 week

B(1)2 weeks

C(1)2 weeks

D(2)1 week

C(2)2 weeks

E(3)2 weeks