AERO ENGINE 2

download AERO ENGINE 2

of 55

Transcript of AERO ENGINE 2

  • 7/30/2019 AERO ENGINE 2

    1/55

    1

    3. Diagram T-s or h-s

    Enthalpy, Entropy: Stateparameters

    2 parameters can describe state

    of gas

    By convention, p-v, T-s, h-s

  • 7/30/2019 AERO ENGINE 2

    2/55

    2

    Diag T-s for compression

    Equal pressure linep2>p1

    1-2 comp s constant,

    Dh=Cp(T2-T1) 1-2 irreversible comp,

    under same p,

    Dh=Cp(T2-T1) 31243 friction heatqin

    1221 due to n

  • 7/30/2019 AERO ENGINE 2

    3/55

    3

    Diag T-s for compression

    Total loss 32243 Compressor efficiency

    (neglect Cp variation)

    Usually use total T

    2 1

    '

    2 1

    c

    T T

    T T

  • 7/30/2019 AERO ENGINE 2

    4/55

    4

    Equal pressure linep2>p1

    1-2 expan s constant,

    Dh=Cp(T1-T2) 1-2 irreversible comp,under same p,

    Dh=Cp(T1-T

    2)

    31243 friction heat qin

    1221 due to n

    Diag T-s for expansion

  • 7/30/2019 AERO ENGINE 2

    5/55

    5

    Total loss 32243 Turbine efficiency

    (neglect Cp variation)

    TT

    TTT

    21

    '

    21

    Diag T-s for expansion

  • 7/30/2019 AERO ENGINE 2

    6/55

    6

    Diagram h-s

    Using diagram h-s shows directly

    relations of energy exchanges Compression efficiency C=A/C

    Expansion efficiency T=C/A

  • 7/30/2019 AERO ENGINE 2

    7/55

    7

    4. Cycle and cycle efficiency

    Thermal machines transfer heatenergy to mechanical energy

    SubstanceAir

    ExpansionMechanical work

    Thermal cycle

  • 7/30/2019 AERO ENGINE 2

    8/55

    8

    Carnots cycle

    DA

    AB, heating

    q1 BC

    CD, release

    heat q2unavoidably

  • 7/30/2019 AERO ENGINE 2

    9/55

    9

    Carnots cycle

    Efficiency

    T1orT2

    t

    T

    T

    q

    qqt

    1

    2

    1

    21 1

  • 7/30/2019 AERO ENGINE 2

    10/55

    10

    Generic cycle

    Efficiency

    At the same T1

    and T2, Carnots

    cycle has thehighest efficiency.

    ABA

    ABA

    t

    S

    S

    431

    21

  • 7/30/2019 AERO ENGINE 2

    11/55

    11

    1.3 Fundamental equations of

    aerodynamics

    1. Continuity equationr1A1v1=r2A2v2=qm

    (1-29)

    Vis speed

    For incompressible,r1=r2A1v1=A2v2 (1-30)

  • 7/30/2019 AERO ENGINE 2

    12/55

    12

    2. Energy equationA volume of air from

    1-2 to 1-2 in dt

    Adding heat qdmOutput work Wdm

    dm=vArdtismass

    flow at any sectionKinetic energy

    change

    22d

    2

    1

    2

    2 vvm

    1.3 Fundamental equations of

    aerodynamics

  • 7/30/2019 AERO ENGINE 2

    13/55

    13

    2. Energy equation (Cont'd)

    Internal energychange: dm(u2-u1)

    Work to gas

    p2v2A2dt-p1v1A1dt

    Neglecting gravity,

    thenW

    vh

    vhq

    22

    2

    2

    2

    2

    1

    1

  • 7/30/2019 AERO ENGINE 2

    14/55

    14

    2. Energy equation(Cont'd)

    Ifq=W=0, then

    or

    22

    2

    2

    2

    2

    1

    1

    vh

    vh

    constTv

    cp

    2

    2

  • 7/30/2019 AERO ENGINE 2

    15/55

    15

    2. Energy equation (Cont'd)

    Means that when gasflowing in a tube (with

    friction), enthalpy +

    kinetic energy remains

    unchanged if no work

    gets into the act.

    constTv

    cp 2

    2

  • 7/30/2019 AERO ENGINE 2

    16/55

    16

    1.3 Fundamental equations of

    aerodynamics (Cont'd)

    3. Bernoullis equation Differential for of above equation

    First law of thermodynamics

    dWdvdhdq 221

    r

    1pddudqdq in fin dWdq

  • 7/30/2019 AERO ENGINE 2

    17/55

    17

    3. Bernoullis equation (Cont'd)

    Enthalpy definition

    Then

    Integration

    dppddhpddhdurrr111

    02

    2

    fdWdW

    vd

    dp

    r

    02

    1 21

    2

    2

    2

    1 fWWvv

    dp

    r

  • 7/30/2019 AERO ENGINE 2

    18/55

    18

    3. Bernoullis equation (Cont'd)

    First term depends on the process

    If no work (W=0) and isentropic (Wf=0)pr-const

    0

    2

    1 21

    2

    2

    2

    1

    f

    WWvvdp

    r

    02

    11

    1

    1

    2

    2

    1

    1

    21

    vv

    p

    pRT

  • 7/30/2019 AERO ENGINE 2

    19/55

    19

    3. Bernoullis equation (Cont'd)

    First term depends on the process

    Isentropic and incompressible, W=0:

    0

    2

    1 21

    2

    2

    2

    1

    f

    WWvvdp

    r

    rrr12

    2

    1

    ppdp

    constvpvp 22

    2

    11

    2

    22 rr

  • 7/30/2019 AERO ENGINE 2

    20/55

    20

    3. Bernoullis equation (Cont'd)

    Isentropic

    0212

    122

    2

    1 fWWvvdpr

    02

    11

    1

    1

    2

    2

    1

    1

    21

    vv

    p

    pRT

    Generic

  • 7/30/2019 AERO ENGINE 2

    21/55

    21

    1.3 Fundamental equations of

    aerodynamics (Cont'd) 4. Sound speed and Mach number

    Sound speed in fluid

    In air, sound propagation is seen as adiabatic process, ie.

    pr- const. Then

    Ratio of specific heats

    RGas constant

    TAbsolute temperature

    rd

    dpc

    Tc R

  • 7/30/2019 AERO ENGINE 2

    22/55

    22

    4. Sound speed and M (Cont'd)

    Mach Number

    M>1Supersonic

    M

  • 7/30/2019 AERO ENGINE 2

    23/55

    23

    1.3 Fundamental equations of

    aerodynamics (Cont'd)

    5. Stagnation parameters of flow andaerodynamic functions

    From above equations, flow kineticenergy (speed), enthalpy and pressure

    potential energy can be converted from

    one to others.

    hv and p

  • 7/30/2019 AERO ENGINE 2

    24/55

    24

    5. Stagnation parameters andfunctions (Cont'd)

    If flow stagnates (v=0) as isentropicprocess, the kinetic energy is

    converted totally to enthalpy. It is

    called stagnation enthalpy, or totalenthalpy

    (1-38)2

    2

    * vTch p

  • 7/30/2019 AERO ENGINE 2

    25/55

    25

    5. Stagnation parameters andfunctions (Cont'd)

    v: ordered movement

    T: disordered movement

    2

    2* vTch p

  • 7/30/2019 AERO ENGINE 2

    26/55

    26

    5. Stagnation parameters andfunctions (Cont'd)

    Corresponding stagnation temperatureor total temperature:

    (1-39)

    Since

    1-40

    Rcp1

    pc

    vTT

    2

    2*

    Tc R

    2

    *

    211 M

    TT

  • 7/30/2019 AERO ENGINE 2

    27/55

    27

    Stagnation process

    Its isentropic, so

    T

    Tvv

    pp

    *

    *

    1*

  • 7/30/2019 AERO ENGINE 2

    28/55

    28

    5. Stagnation parameters and

    functions (Cont'd) Since stagnation is isentropic, so:

    (1-41)

    (1-42)

    p*Total Pressure

    r*Total Density

    12

    *

    2

    11

    M

    p

    p

    1

    1

    2

    *

    2

    11

    r

    rM

  • 7/30/2019 AERO ENGINE 2

    29/55

    29

    5. Stagnation parameters and

    functions (Cont'd)According to the 3 equations above, for a

    given gas flow, the ratios of the totalparameters and steady parameters are

    function of Mach number. When air flows isentropically in a tube

    without energy added, the totalparameters (Enthalpy, temperature,

    pressure and density) remain unchanged.

    5 St ti t d

  • 7/30/2019 AERO ENGINE 2

    30/55

    30

    5. Stagnation parameters and

    functions (Cont'd)

    Critical sound speed ccr(in tunnel)

    v increases along the tunnel (ex. Laval nozzle)

    When v increases, Tdecreases. Sound speed

    cis function ofT, itgoes down.

    5 St ti t d

  • 7/30/2019 AERO ENGINE 2

    31/55

    31

    5. Stagnation parameters and

    functions (Cont'd)

    Critical sound speed ccr(in tunnel)

    When v=c, ie M=1, this chas special meaning,

    called critical sound speed ccr. This section is

    called critical section and it is the smallest

    section in the tunnel, also called throat.

    5 St ti t d

  • 7/30/2019 AERO ENGINE 2

    32/55

    32

    5. Stagnation parameters and

    functions (Cont'd)

    Critical sound speed ccr(in tunnel)

    ccr is a parameter of the isentropic flow of

    the tunnel. ccr is constant in this kind of flow.

    5 St ti t d

  • 7/30/2019 AERO ENGINE 2

    33/55

    33

    5. Stagnation parameters and

    functions (Cont'd)

    Definition of speed coefficient in asection

    (1-43)

    From (1-40) , we obtaincr

    c

    v

    *

    1

    2

    TTcr

    2*

    2

    11 M

    T

    T

    5 St ti t d

  • 7/30/2019 AERO ENGINE 2

    34/55

    34

    5. Stagnation parameters and

    functions (Cont'd)

    And*

    1

    2TTcr

    *2

    1

    2RTccr

    *

    1

    2RTccr

    C d C

  • 7/30/2019 AERO ENGINE 2

    35/55

    35

    Cand Ccr

    C Ccr

    Apply to local tunnel

    Depending on T T*

    Speed ratio M

    Relation see followingM

    5 Stagnation parameters and

  • 7/30/2019 AERO ENGINE 2

    36/55

    36

    5. Stagnation parameters and

    functions (Cont'd)

    Using

    in , we obtain

    and

    2

    222

    c

    cM cr

    *2

    12 RTccr

    RTc 2

    2*

    2

    11 M

    T

    T

    2

    2

    2

    2

    11

    2

    1

    M

    M

    2

    2

    2

    1

    11

    1

    2

    M

    5 St ti t d

  • 7/30/2019 AERO ENGINE 2

    37/55

    37

    5. Stagnation parameters and

    functions (Cont'd)

    Change (1-40), (1-41) & (1-42) to

    (1-46)

    (1-47)

    (1-48)

    t, p and e three aerodynamic func

    2

    * 1

    11)(

    tT

    T

    12

    * 1

    11)(

    p

    p

    p

    1

    1

    2

    *

    1

    11)(

    r

    re

    5 St ti t d

  • 7/30/2019 AERO ENGINE 2

    38/55

    38

    5. Stagnation parameters and

    functions (Cont'd)

    Flow density function

    kg/svAqm r

    1

    1

    2*

    111

    rr

    *

    1

    2RTcv cr

    *1

    1

    2*

    1

    2

    1

    11 RTv

    rr

    5 Stagnation parameters and

  • 7/30/2019 AERO ENGINE 2

    39/55

    39

    5. Stagnation parameters and

    functions (Cont'd)

    Flow density function

    (1-49) q() presents relative flow density in

    section A to the critical section even

    though the critical section does not exist. Ratio of the sections

    1

    1

    21

    1

    1

    11

    2

    1

    )()(

    rr

    A

    A

    v

    vq cr

    cr

    5 Stagnation parameters and

  • 7/30/2019 AERO ENGINE 2

    40/55

    40

    5. Stagnation parameters and

    functions (Cont'd)

    Using flow density function and totalparameters, mass flow can be expressed:

    1-50

    where

    Air 0.04042, gas 0.03968

    *

    * )(

    T

    AqpKqm

    1

    1

    1

    2

    RK J

    Kkg.

    5 Stagnation parameters and

  • 7/30/2019 AERO ENGINE 2

    41/55

    41

    5. Stagnation parameters and

    functions (Cont'd)

    At the critical section, q()=1.

    *

    *

    T

    Ap

    Kqcr

    m

    1 3 F d t l ti f

  • 7/30/2019 AERO ENGINE 2

    42/55

    42

    1.3 Fundamental equations of

    aerodynamics

    6. Equation of momentum

    Based on second Newtons law

    Momentum change of an object at a

    period of time is equal to the applied

    force

    In aircraft engines

    )( 12 vvqF m

    1 3 F d t l ti f

  • 7/30/2019 AERO ENGINE 2

    43/55

    43

    1.3 Fundamental equations of

    aerodynamics

    7. Equation of moment of momentum Similar with above equation, but

    rotational movement

    vmrdt

    dFr

  • 7/30/2019 AERO ENGINE 2

    44/55

    44

    1.3 Fundamental equations ofaerodynamics

    8. Shock waves and expansion waves

    Ex. The tail trace when a boat goes with

    a high speed.

    M>1M=1

    8 S

  • 7/30/2019 AERO ENGINE 2

    45/55

    45

    8. Shock waves and expansion

    waves (Contd)

    Or bridge pier when water flows.

    Accumulation of disturbances

    M>1M=1

    8 Sh k d i

  • 7/30/2019 AERO ENGINE 2

    46/55

    46

    8. Shock waves and expansion

    waves (Contd)

    Intakes: Fig (a) normal shock wave, due to

    intakes form; Fig (b) oblique shock wave

    The anglebdepends on Mach number of the

    flow and geometrical angle of the cone .

    8 Sh k d i

  • 7/30/2019 AERO ENGINE 2

    47/55

    47

    8. Shock waves and expansion

    waves (Contd)

    When Mreduces orincreases,will increase until the wave

    becomes a normal shock wave.

    8 Sh k d i

  • 7/30/2019 AERO ENGINE 2

    48/55

    48

    8. Shock waves and expansion

    waves (Contd)

    When supersonic flow passes

    through the shock wave, sharply

    speed decreases, pressure and

    temperature increase.

    After normal wave, the flow is

    certainly subsonic. But after obliqueshock wave, it is still supersonic.

    8 Sh k d i

  • 7/30/2019 AERO ENGINE 2

    49/55

    49

    8. Shock waves and expansion

    waves (Contd)

    Strength of the shock wave is

    described by pressure ratio of after

    and before. It is only function ofM

    for normal shock wave, the greater

    M, the stronger the wave.

    For oblique shock wave, the greaterMand , the stronger the wave.

    8 Sh k d i

  • 7/30/2019 AERO ENGINE 2

    50/55

    50

    8. Shock waves and expansion

    waves (Contd) Supersonic flow passing through the shock

    wave is NOT isentropic process. Partial

    mechanical energy Irreversibly changes to

    heat, and total pressure decreases. This is shock wave loss, and usually total

    pressure recoverys is used to present the

    loss. It is function of the wave strength, the

    stronger the wave, the greater the loss.

  • 7/30/2019 AERO ENGINE 2

    51/55

    51

    8. Expansion waves (Contd)

    When a supersonicair flows to a lowerpressure zone, thereare expansion wavesdue to air continuousexpansion.

    In Fig, turbine

    cascade passage. Inthe throat AA,critical section, flowbecomes supersonic.

  • 7/30/2019 AERO ENGINE 2

    52/55

    52

    8. Expansion waves (Contd)

    In downstream, it islow pressure zone.The flow accelerates,it passes through aseries of expansionwaves, and speedincreases,

    temperature andpressure decrease.

  • 7/30/2019 AERO ENGINE 2

    53/55

    53

    8. Expansion waves (Contd)

    The flow changesalso the direction. Thebigger the turnedangle, the moreexpansion and flowparameters changemore.

  • 7/30/2019 AERO ENGINE 2

    54/55

    54

    8. Expansion waves (Contd)

    The turned angledepends on exit

    pressure. The lower

    the pressure, thebigger the angle.

    If pressure increases,

    expansion waves maydisappear and the

    flow may be subsonic.

    Summary

  • 7/30/2019 AERO ENGINE 2

    55/55

    55

    Summary

    1.1 First law of thermodynamics Gas, state parameters, gas constants, processes

    and parameters

    Enthalpy and first law

    1.2 Second law of thermodynamics Entropy and second law

    Cycle and efficiency

    1.3 Aerodynamics fundamental equations

    Fundamental equations Sound speed and Mach number

    Stagnation parameters and aerodynamic functions

    Shockwaves and expansion waves