Wbgu Jg2008 En

download Wbgu Jg2008 En

of 393

Transcript of Wbgu Jg2008 En

  • 8/8/2019 Wbgu Jg2008 En

    1/392

    R. Schubert

    H. J. Schellnhuber

    N. Buchmann

    A. Epiney

    R. Griehammer

    M. Kulessa

    D. MessnerS. Rahmstorf

    J. Schmid

    German Advisory Council

    on Global Change(WBGU)

    Future Bioenergy and

    Sustainable Land Use

    Future Bioenergy and

    Sustainable Land Use

  • 8/8/2019 Wbgu Jg2008 En

    2/392

    Future Bioenergy and Sustainable Land Use

  • 8/8/2019 Wbgu Jg2008 En

    3/392

    Members of the German Advisory Council on Global Change (WBGU)

    (as of 31 October 2008)

    Prof Dr Renate Schubert (chair), Economist Director of the Institute for Environmental Decisions, ETH Zurich (Switzerland)

    Prof Dr Hans Joachim Schellnhuber CBE (vice chair), Physicist Director of the Potsdam Institute for Climate Impact Research and visiting professorat Oxford University, UK

    Prof Dr Nina Buchmann, Ecologist Professor of Grassland Science, Institute of Plant Sciences, ETH Zurich (Switzerland)

    Prof Dr Astrid Epiney, Lawyer Professor of International Law, European Law and Swiss Public Law, Universit de Fribourg (Switzerland)

    Dr Rainer Griehammer, Chemist Director of the Institute for Applied Ecology, Freiburg/Breisgau

    Prof Dr Margareta E. Kulessa, Economist Professor of International Economics, University of Applied Science, Mainz

    Prof Dr Dirk Messner, Political Scientist Director of the German Development Institute, Bonn

    Prof Dr Stefan Rahmstorf, Physicist Professor for Physics of the Oceans at Potsdam University and head of the Climate System Departmentat the Potsdam Institute for Climate Impact Research

    Prof Dr Jrgen Schmid, Aerospace Engineer Professor at Kassel University, Chairman of the Executive Board of the Institute for Solar EnergyTechnology

    WBGU is an independent, scientific advisory body to the German Federal Government set up in 1992 in therun-up to the Rio Earth Summit. The Council has nine members, appointed for a term of four years by thefederal cabinet. The Council is supported by an interministerial committee of the federal government com-prising representatives of all ministries and of the federal chancellery. The Councils principal task is to pro-vide scientifically-based policy advice on global change issues to the German Federal Government.

    The Council:

    WBGU publishes flagship reports every two years, making its own choice of focal themes. In addition, theGerman government can commission the Council to prepare special reports and policy papers.For more information please visit www.wbgu.de.

  • 8/8/2019 Wbgu Jg2008 En

    4/392

    Future Bioenergy and SustainableLand Use

    London and Sterling, VA

    G ERMAN A DVISORY C OUNCIL ON G LOBAL C HANGE

    WBGU

  • 8/8/2019 Wbgu Jg2008 En

    5/392

    German Advisory Council on Global Change (WBGU)SecretariatReichpietschufer 60-62, 8th FloorD-10785 Berlin, Germany

    http://www.wbgu.de

    German edition published in 2009, entitledWelt im Wandel: Zukunftsfhige Bioenergie und nachhaltige LandnutzungWBGU, Berlin 2009

    First published by Earthscan in the UK and USA in 2009

    Copyright German Advisory Council on Global Change, 2009

    ISBN 978-1-84407-841-7

    Printed and bound by Gutenberg Press, MaltaTranslation by Christopher Hay, Seeheim-Jugenheim, [email protected] for cover design with kind permission of CLAAS Deutschland (Mhdrescher Lexion 600) and Schmack Biogas AG,photographer Herbert Stolz (Biomethananlage). All other pictures Prof Dr Meinhard Schulz-Baldes, WBGU.

    For a full list of publications please contact:Earthscan8-12 Camden High Street

    London, NW1 0JH, UKPh: +44 (0)20 7387 8558Fax: +44 (0)20 7387 8998Email: [email protected]: www.earthscan.co.uk

    22883 Quicksilver Drive, Sterling, VA 20166-2012, USA

    Earthscan publishes in association with the International Institute for Environment and Development

    A catalogue record for this book is available from the British Library

    Library of Congress Cataloging-in-Publication Data has been applied forWissenschaftlicher Beirat der Bundesregierung Globale Umweltvernderungen (Germany)Future Bioenergy and Sustainable Land Use / German Advisory Council on Global Change.p. cm.Includes bibliographical references (p. ).ISBN 978-1-84407-841-7

    QH77.G3 W57 2001333.95160943--dc21

    2001023313This book is printed on elemental chlorine-free paper

  • 8/8/2019 Wbgu Jg2008 En

    6/392

    Council Staff and Acknowledgments

    This Special Report builds upon the expert and com-mitted work performed by the WBGU Secretariatstaff and by the WBGU members and their assist-ants.

    Scientific Staff at the Secretariat

    Prof Dr Meinhard Schulz-Baldes(Secretary-General)

    Dr Carsten Loose(Deputy Secretary-General)

    Dr Karin Boschert

    Dr Oliver Deke

    Dipl Umweltwiss Tim Hasler

    Dr Nina V. Michaelis

    Dr Benno Pilardeaux(Media and Public Relations)

    Dr Astrid Schulz

    Administration, Editorial work and Secretariat

    Vesna Karic-Fazlic (Accountant)

    Martina Schneider-Kremer, MA (Editorial work)

    Margot Wei (Secretariat)

    Scientific Staff to the Council Members

    Dipl Phys Jochen Bard (Institute for Solar EnergyTechnology, ISET Kassel, until 30.06.2007)

    Steffen Bauer, MA (German Development Insti-tute, DIE Bonn)

    Dipl Volksw Julia E Blasch (Institute for Environ-mental Decisions, ETH Zurich, Switzerland)

    Dr Georg Feulner (Potsdam Institute for ClimateImpact Research, PIK)

    Dr Sabina Keller (ETH Zurich, Switzerland)

    Dipl Geogr Andreas Manhart (Institute for AppliedEcology, Freiburg, until 30.04.2008)

    Dr Martin Scheyli (University Fribourg, Switzer-land)

    MSc Dipl Ing Michael Sterner (Institut fr SolareEnergieversorgungstechnik, ISET Kassel, from01.07.2007)

    Dr Ingeborg Schinninger (ETH Zurich, Switzerland,until 31.05.2007)

    Dr Jennifer Teufel (Institute for Applied Ecology,Freiburg, from 01.05.2008)

  • 8/8/2019 Wbgu Jg2008 En

    7/392

    VI Council Staff and Acknowledgments

    WBGU owes a debt of gratitude to the importantcontributions and support provided by other mem-bers of the research community. This report builds onthe following expert studies: Dipl.-Umweltwiss. Tim Beringer, Prof. Wolfgang

    Lucht (Potsdam Institute for Climate ImpactResearch, PIK): Simulation nachhaltiger Bioen-ergiepotentiale.

    Dr Gran Berndes (Department of Energy andEnvironment, Physical Resource Theory, Chalm-ers University of Technology, Gothenburg, Swe-den): Water demand for global bioenergy produc-tion: trends, risks and opportunities.

    Dr Andr Faaij (Utrecht University, CopernicusInstitute): Bioenergy and global food security.

    Dr Uwe R. Fritsche, Kirsten Wiegmann (ko-Institut, Darmstadt Office): Treibhausgasbilan-zen und kumulierter Primrenergieverbrauch vonBioenergie-Konversionspfaden unter Bercksich-tigung mglicher Landnutzungsnderungen.

    Dr Les Levidow, PhD (The Open University,Development Policy and Practice (DPP) Group,Milton Keynes, UK), Helena Paul (EcoNexus,Oxford, UK): Land-use, Bioenergy and Agro-bio-technology.

    Dipl.-Ing. Franziska Mller-Langer, AnastasiosPerimenis, Sebastian Brauer, Daniela Thrn, Prof.Dr-Ing. Martin Kaltschmitt (German BiomassResearch Centre DBFZ, Leipzig): Technischeund konomische Bewertung von Bioenergie-

    Konversionspfaden. Mark W. Rosegrant, Anthony J. Cavalieri (Inter-national Food Policy Research Institute IFPRI,Washington, DC): Bioenergy and Agro-biotech-nology.

    Mark W. Rosegrant, Mandy Ewing, Siwa Msangi,and Tingju Zhu (International Food PolicyResearch Institute IFPRI, Washington, DC):Bioenergy and Global Food Situation until2020/2050.

    Dr Ingeborg Schinninger (ETH Zrich, Institutfr Pflanzenwissenschaften): Globale Landnut-zung.

    Dr oec. troph. Karl von Koerber, Dipl. oec. troph.Jrgen Kretschmer, Dipl. oec. troph. StefaniePrinz (Beratungsbro fr Ernhrungskologie,Munich): Globale Ernhrungsgewohnheiten undtrends.

    For help in creating the graphics we are indebted toDanny Rothe, Design Werbung Druck, Berlin.

    During its intensive conference held in May2008 in Schmckwitz, Berlin, WBGU drew valuableinput from the papers on THG-Emission Bio-Proz-esse mit LUC by Dr Uwe R. Fritsche (ko-Institut,Darmstadt Office) and on Technischen und kon-omischen Bewertung von Bioenergiekonversionsp-

    faden by Dipl.-Ing. Franziska Mller-Langer (Ger-man Biomass Research Centre DBFZ, Leipzig).We should also like to thank Tim Beringer (Pots-dam Institute for Climate Impact Research, PIK) forpresenting the results of his Modellierung zu nach-

    haltigem globalen Bioenergiepotenzial.WBGU also wishes to thank all those who pro-moted the progress of this report through discussion,comments, advice and research or by reviewing partsof the report:

    Prof. Dr Markus Antonietti (Max-Planck-Insti-tut fr Kolloid- und Grenzflchenforschung, Pots-dam); Ing. Michael Beil (Institut fr Solare Ener-gieversorgungstechnik ISET Hanau); Ver-ena Brinkmann (Sector Project HERA House-hold Energy Programme, GTZ Eschborn); QaysHamad, Advisor to the Executive Director forGermany (The World Bank, Washington, DC);Peter Herkenrath and Dr Lera Miles (UNEP-WCMC, Cambridge); DirProf. Dr Christian Hey andDr Susan Krohn (German Advisory Council on theEnvironment SRU, Berlin); Holger Hoff (PotsdamInstitute for Climate Impact Research and Stock-holm Environment Institute); Philipp Mensch (ETHZrich); Gregor Meerganz von Medeazza, PhD (Sus-tainable Energy and Climate Change Initiative SECCI, Washington, DC); Ritah Mubbala (Institutfr Solare Energieversorgungstechnik ISET, Kas-sel); Dipl.-Volksw. Markus Ohndorf (ETH Zrich);Dr Alexander Popp (Potsdam Institute for Climate

    Impact Research, PIK); Dr Timothy Searchinger(Princeton University, Princeton, NJ); Dr Karl-Heinz Stecher (KfW Bankengruppe, Berlin); Dr-Ing.Alexander Vogel (German Biomass Research Cen-tre DBFZ, Leipzig) and Dr Tilman Altenburg, DrMichael Brntrup, Dr Matthias Krause, Christianvon Drachenfels, Dipl.-Ing. agr. Heike Hffler, JuliaHolzbach and Kathrin Seelige (German Develop-ment Institute DIE, Bonn).

    WBGU is much indebted to the persons whoreceived the WBGU delegation visiting India from 5to 17 February 2008, and to the organizers of the visit.The German Embassy in New Delhi provided exten-sive support in making the necessary arrangements.WBGU proffers warmest thanks to AmbassadorMtzelburg and all the embassy staff for their invalu-able assistance. WBGU is particularly indebted to Drvon Mnchow-Pohl and Ms Subhedar, who plannedthe different parts of the itinerary and arrangedmeetings and discussions. Thanks are also due to MsHolzhauser, Mr Wirth and Ms Tiemann, who accom-panied WBGU to meetings in Delhi. We should alsolike to thank the GTZ team: Ms Kashyap, Mr Glck,Dr Bischoff, Dr Porst and Mr Babu.

    Many local experts from politics, administrationand science offered guided tours, prepared presenta-

    VI

  • 8/8/2019 Wbgu Jg2008 En

    8/392

    VIICouncil Staff and Acknowledgments

    tions and were available for in-depth discussions andconversations. WBGU proffers them all its warmestthanks.

  • 8/8/2019 Wbgu Jg2008 En

    9/392

  • 8/8/2019 Wbgu Jg2008 En

    10/392

    Council Staff and Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V

    Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XVII

    Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XIX

    Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXI

    Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXIV

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

    2 Motives for deploying bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

    2.1 Current discourses on bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

    2.2 Sustainable global energy systems and land-use systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232.2.1 Bioenergy, energy system transformation and climate change mitigation . . . . . . . . . . 232.2.2 Bioenergy, energy system transformation and energy poverty . . . . . . . . . . . . . . . . . . . . 242.2.3 Specific properties of biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    3 Sustainability constraints upon bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

    3.1 Ecological sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273.1.1 Guard rail for climate protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273.1.2 Guard rail for biosphere conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.3 Guard rail for soil protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.1.4 Additional ecological sustainability requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    3.2 Socioeconomic sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293.2.1 Guard rail for securing access to sufficient food . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293.2.2 Guard rail for securing access to modern energy services . . . . . . . . . . . . . . . . . . . . . . . 303.2.3 Guard rail for avoiding health risks through energy use . . . . . . . . . . . . . . . . . . . . . . . . . 313.2.4 Additional socioeconomic sustainability requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

    4 Bioenergy, land use and energy systems: Situation and trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

    4.1 Bioenergy in the global energy system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334.1.1 Current bioenergy use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    4.1.1.1 Bioenergy in the global energy system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.1.1.2 Use of bioheat and bio-electricity in the energy system . . . . . . . . . . . . . . . . . 354.1.1.3 Use of biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    Contents

  • 8/8/2019 Wbgu Jg2008 En

    11/392

    X Contents

    4.1.2 Current bioenergy promotion policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4.2 Global land cover and land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .464.2.1 Global land cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2.2 Global land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    4.2.3 The influence of land-use changes on ecosystem services . . . . . . . . . . . . . . . . . . . . . . . . 524.2.3.1 Conversion of forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.2.3.2 Conversion of wetlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.2.3.3 Conversion of grassland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.2.3.4 Conversion of arable land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    4.2.4 Summing up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    5 Competing uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

    5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

    5.2 Competition with food and feed production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .575.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .575.2.2 Growing food supply and rising demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585.2.3 Challenges arising from changed dietary habits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    5.2.3.1 A summary of individual foods: Global trends . . . . . . . . . . . . . . . . . . . . . . . . 595.2.3.2 Land requirements of dietary habits and foods . . . . . . . . . . . . . . . . . . . . . . . . 605.2.3.3 Additional land requirements as a result of changing dietary habits . . . . . . . 62

    5.2.4 Limits to potential food production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625.2.4.1 Potentially available land and soil degradation . . . . . . . . . . . . . . . . . . . . . . . . 635.2.4.2 Climate change impacts on production potential . . . . . . . . . . . . . . . . . . . . . . . 63

    5.2.5 Impacts of the bioenergy boom on food security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635.2.5.1 The four dimensions of food security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.2.5.2 The influence of the bioenergy boom on prices and incomes . . . . . . . . . . . . 65

    5.2.6 Summary: Ways to defuse competition for land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    5.3 Using biomass as an industrial feedstock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .705.3.1 Feedstock use of plant raw materials (excluding wood) in Germany . . . . . . . . . . . . . . . 705.3.2 Feedstock use of forestry products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725.3.3 Cascade use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735.3.4 The outlook for material production without oil, gas and coal . . . . . . . . . . . . . . . . . . . 73

    5.4 Competition with biological diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .745.4.1 Competition between energy crop cultivation and existing protected areas . . . . . . . . 745.4.2 Competition between energy crops and natural ecosystems outside protected areas . 765.4.3 Competition between energy crops and the conservation of biological diversity

    in agricultural areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785.4.4 The cross-cutting issue of climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    5.5 Land-use options for climate change mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .815.5.1 Forests and climate change mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    5.5.1.1 Avoiding deforestation and forest degradation . . . . . . . . . . . . . . . . . . . . . . . . 825.5.1.2 Afforestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835.5.1.3 Forest management, sustainable forestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    5.5.2 Agriculture and climate change mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.5.3 Climate change mitigation through the use of long-lived biomass products . . . . . . . . 865.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    5.6 Competing use of soil and water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .895.6.1 Soil degradation and desertification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

  • 8/8/2019 Wbgu Jg2008 En

    12/392

    5.6.2 Overuse of freshwater resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.6.3 Conclusion: Integrate energy crop cultivation into sustainable soil and water

    management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    6 Modelling global energy crop potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

    6.1 Previous appraisals of bioenergy potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .956.1.1 Bioenergy potentials in the recent literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .956.1.2 Summary and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    6.2 Global land-use models: The state of scientific knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .986.2.1 Effects and impacts of human land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .986.2.2 Typology of global models of land use and land-use change . . . . . . . . . . . . . . . . . . . . 100

    6.3 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1006.3.1 Methods used in the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    6.3.1.1 Modelling plant productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006.3.1.2 Agriculture in LPJmL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.3.1.3 Modelling the cultivation of energy crops . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.3.1.4 Comparison with measured data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.3.1.5 Calculation of global bioenergy potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    6.3.2 Data sets used in the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.3.2.1 Climate change and climate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.3.2.2 Land-use data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    6.4 Model assumptions and scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1026.4.1 Climate models and emissions scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1026.4.2 Irrigation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.4.3 Scenarios for the calculation of biomass potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    6.4.3.1 Scenarios for securing food production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    6.4.3.2 Scenarios for nature conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056.4.3.3 Scenarios for greenhouse gas emissions from land-use changes . . . . . . . . . 106

    6.5 Results of the modelling of the global potential of energy crops . . . . . . . . . . . . . . . . . . . . . . . .1086.5.1 Influence of the climate models and emissions scenarios . . . . . . . . . . . . . . . . . . . . . . . .1086.5.2 Influence of the compensation period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086.5.3 Bioenergy potentials for four scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.5.4 Geographical distribution of possible land for energy crop cultivation . . . . . . . . . . . 1166.5.5 Biomass yields for trees and grasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    6.6 Key uncertainties in the modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1166.6.1 Quality of the climate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1166.6.2 Response of plants and ecosystems to climate change . . . . . . . . . . . . . . . . . . . . . . . . . . 1166.6.3 Availability of water and nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176.6.4 Development of energy crop yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226.6.5 Land-use data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226.6.6 Future irrigation possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    6.7 Regional survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1236.7.1 Latin America and the Caribbean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.7.2 China and neighbouring countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266.7.3 Pacific Asia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276.7.4 South Asia and India. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276.7.5 Sub-Saharan Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276.7.6 Community of Independent States (CIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    XIContents

  • 8/8/2019 Wbgu Jg2008 En

    13/392

    XII

    6.8 Interpretation and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

    7 Biomass cultivation and conversion to energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133

    7.1 Cultivation systems for biomass production as energy resource . . . . . . . . . . . . . . . . . . . . . . . . .133

    7.1.1 Energy crop cultivation in monoculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337.1.1.1 Perennial crops in the tropics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347.1.1.2 Rotational crops in temperate latitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1387.1.1.3 Perennial crops in temperate latitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    7.1.2 Short-rotation plantations (SRPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1407.1.3 Agroforestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1417.1.4 Permanent grassland and pastures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437.1.5 Forests as biomass producers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    7.1.5.1 Biomass use in tropical forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457.1.5.2 Biomass use in temperate forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477.1.5.3 Biomass use in boreal forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    7.1.6 Summary evaluation of currently predominant cultivation systems . . . . . . . . . . . . . . . 151

    7.2 Technical and economic analysis and appraisal of bioenergy pathways . . . . . . . . . . . . . . . . . . .1517.2.1 Overview of energy conversion options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1517.2.2 Energy conversion technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    7.2.2.1 Combustion and thermochemical processes . . . . . . . . . . . . . . . . . . . . . . . . . . 1517.2.2.2 Physical-chemical processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557.2.2.3 Biochemical conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    7.2.3 Efficiencies of various modern conversion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 1577.2.3.1 Overview of the bioenergy pathways investigated . . . . . . . . . . . . . . . . . . . . . 1577.2.3.2 Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    7.2.4 Efficiencies of various traditional conversion processes . . . . . . . . . . . . . . . . . . . . . . . . 1657.2.5 Economic analysis and assessment of conversion processes . . . . . . . . . . . . . . . . . . . . . 166

    7.2.5.1 Production costs of modern conversion processes . . . . . . . . . . . . . . . . . . . . . 166

    7.2.5.2 Discussion of future developments of bioenergy pathway costs . . . . . . . . . 1667.3 Greenhouse gas balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

    7.3.1 Life-cycle assessment methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1707.3.2 Greenhouse gas balances of selected bioenergy pathways . . . . . . . . . . . . . . . . . . . . . . 171

    8 Optimizing bioenergy integration and deployment in energy systems . . . . . . . . . . . . . . . . . . . . . . . . .189

    8.1 Bioenergy as a part of sustainable energy supply in industrialized countries . . . . . . . . . . . . . .1898.1.1 Transforming energy systems for improved energy efficiency and climate

    change mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1898.1.1.1 Transformation components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1898.1.1.2 Transforming energy systems by combining the components . . . . . . . . . . . . 194

    8.1.2 The role of bioenergy in the sustainable energy supply of industrialized countries . . 1958.1.2.1 Bioenergy for transport: Bio-electricity versus biofuels . . . . . . . . . . . . . . . . 1968.1.2.2 Bioenergy for central and decentral heat supply . . . . . . . . . . . . . . . . . . . . . . 1968.1.2.3 Bioenergy for electricity generation: Control energy and cogeneration . . . 1978.1.2.4 Overall assessment of bioenergy in industrialized countries . . . . . . . . . . . . 1998.1.2.5 Stages en route to sustainable bioenergy use in industrialized countries . . 199

    8.2 Bioenergy as a part of sustainable energy supply in developing countries . . . . . . . . . . . . . . . .2018.2.1 A revolution in traditional biomass use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2018.2.2 Supplying energy in rural areas with the aid of modern biomass use . . . . . . . . . . . . . 2028.2.3 The role of bioenergy in the sustainable and integrated energy supply of

    developing countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048.2.3.1 Bioenergy for transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    Contents

  • 8/8/2019 Wbgu Jg2008 En

    14/392

    XIII

    8.2.3.2 Bioenergy for heat and light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048.2.3.3 Bioenergy for central and decentral electricity generation . . . . . . . . . . . . . 2078.2.3.4 Overall assessment of bioenergy in developing countries . . . . . . . . . . . . . . 2078.2.3.5 Technological stages en route to sustainable bioenergy use in

    developing countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    9 Sustainable biomass production and bioenergy deployment: A synthesis . . . . . . . . . . . . . . . . . . . . . . .209

    9.1 Sustainable production of biomass as an energy resource: The key considerations . . . . . . . . 2099.1.1 Biogenic wastes and residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2099.1.2 Land-use changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2099.1.3 Cultivation systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    9.2 Conversion, application and integration of bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2109.2.1 Climate change mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    9.2.1.1 Reducing greenhouse gases through bioenergy use: Measurementand standard-setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    9.2.1.2 Taking account of indirect land-use change . . . . . . . . . . . . . . . . . . . . . . . . . . 2119.2.1.3 Replacing fossil energy carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2129.2.1.4 Climate change mitigation effect of different technical applications/

    pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2129.2.2 Energy poverty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2169.2.3 Bioenergy as a bridging technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

    10 Global bioenergy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

    10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

    10.2 International climate policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22010.2.1 The UNFCCC as an actor in global bioenergy policy . . . . . . . . . . . . . . . . . . . . . . . . . . .220

    10.2.2 Evaluation, attribution and accounting of emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22110.2.2.1 The current rules and associated problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22110.2.2.2 Criteria and opportunities for the further development of the rules . . . . . . 224

    10.2.3 Bioenergy and the Clean Development Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 22710.2.3.1 Existing rules on bioenergy and its evaluation . . . . . . . . . . . . . . . . . . . . . . . . 22810.2.3.2 Options for further development of the rules . . . . . . . . . . . . . . . . . . . . . . . . . 230

    10.2.4 Approaches to an integrated post-2012 solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23110.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

    10.3 Standards for the production of bioenergy carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23310.3.1 WBGUs criteria for a bioenergy standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

    10.3.1.1 A minimum standard for bioenergy carriers . . . . . . . . . . . . . . . . . . . . . . . . . . 23410.3.1.2 Promotion criteria for biomass production . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

    10.3.2 Schemes for the implementation of standards for bioenergy carriers . . . . . . . . . . . . . 23710.3.2.1 Standards established by private, state and supranational organizations . . 23810.3.2.2 Bilateral agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24310.3.2.3 Multilateral approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

    10.3.3 Implications of the adoption of standards for trade in bioenergy carriers . . . . . . . . . . 24510.3.3.1 Standards as a barrier to trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24610.3.3.2 Implications for trade relations with developing countries and emerging

    economies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24610.3.3.3 Preferential treatment of bioenergy carriers through qualification as

    environmental goods and services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24610.3.4 WTO compliance of standards for bioenergy carriers . . . . . . . . . . . . . . . . . . . . . . . . . . 247

    10.3.4.1 Relevance of WTO law in standard-setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 24710.3.4.2 Justifying discriminatory measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

    Contents

  • 8/8/2019 Wbgu Jg2008 En

    15/392

    XIV

    10.3.4.3 Legal assessment of the sustainability standards recommended byWBGU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    10.3.5 Interim conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    10.4 Options for securing the world food supply in the context of a sustainable bioenergy policy 252

    10.4.1 New challenges arising from bioenergy use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25210.4.2 Short-term coping measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25310.4.2.1 Safety nets and other fiscal measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25310.4.2.2 Administrative price ceilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25310.4.2.3 Short-term aid for smallholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25310.4.2.4 Export restrictions on agricultural products . . . . . . . . . . . . . . . . . . . . . . . . . 25410.4.2.5 Removal of distortions of trade in world agricultural markets . . . . . . . . . . 25410.4.2.6 Financial assistance, emergency aid and reform of the Food Aid

    Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25510.4.3 Medium-term and long-term measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

    10.4.3.1 Bioenergy strategies to avoid land-use competition . . . . . . . . . . . . . . . . . . . 25610.4.3.2 Promotion of the small-scale agricultural sector in developing countries . 25610.4.3.3 More extensive and more differentiated liberalization of world

    agricultural markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25710.4.3.4 Promoting awareness of the consequences of different dietary habits . . . . 25810.4.3.5 Establishment of early warning and risk management systems . . . . . . . . . . 259

    10.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

    10.5 International biodiversity policy and sustainable bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . .26110.5.1 Protected areas and protected area systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

    10.5.1.1 CBD work programme on protected areas . . . . . . . . . . . . . . . . . . . . . . . . . . 26210.5.1.2 Further provisions of the CBD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26310.5.1.3 Options for further elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

    10.5.2 Financing protected area systems through compensation payments . . . . . . . . . . . . . . 26410.5.2.1 Financing the global network of protected areas through international

    payments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26610.5.2.2 Options for further elaboration criteria for an internationalcompensation regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

    10.5.3 Contributions of the CBD to bioenergy standards development . . . . . . . . . . . . . . . . 26810.5.3.1 Provisions of the CBD as the basis for bioenergy standards. . . . . . . . . . . . . 26810.5.3.2 Routes towards implementation of biodiversity-relevant guidelines or

    standards on bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26910.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

    10.6 Water and soil conservation in the context of sustainable bioenergy policy . . . . . . . . . . . . . . .27110.6.1 Soil conservation and desertification control: Potential and limitations

    of the Desertification Convention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27110.6.2 Conservation and sustainable use of freshwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

    10.7 State promotion of bioenergy: Agricultural and industrial policies . . . . . . . . . . . . . . . . . . . . . .27310.7.1 Promoting bioenergy pathways through climate policy . . . . . . . . . . . . . . . . . . . . . . . . . 27310.7.2 Promotion and intervention approaches under sustainable bioenergy policy . . . . . . . 27410.7.3 Agricultural policy: Promoting biomass cultivation for energy production . . . . . . . . . 275

    10.7.3.1 Favouring particular cultivation methods and ecosystem services . . . . . . . . 27510.7.3.2 International initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

    10.7.4 Promoting the conversion of biogenic wastes and residues into energy . . . . . . . . . . . 27610.7.5 Technology policy and the promotion of selected conversion pathways . . . . . . . . . . . 278

    10.7.5.1 Conversion of biomethane to energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27810.7.5.2 Efficient system technology in electricity and heat production . . . . . . . . . . 28010.7.5.3 Direct combustion of solid biomass to generate heat for private

    households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

    Contents

  • 8/8/2019 Wbgu Jg2008 En

    16/392

    XVContents

    10.7.6 Promoting bioenergy in final use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28110.7.7 International initiatives and institutions for the promotion of sustainable

    bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28310.7.7.1 International Renewable Energy Agency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28310.7.7.2 International Conference on Sustainable Bioenergy . . . . . . . . . . . . . . . . . . . 284

    10.7.7.3 Multilateral Energy Subsidies Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . 28410.7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

    10.8 Bioenergy and development cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28510.8.1 Current bioenergy activities in international development cooperation . . . . . . . . . . . 286

    10.8.1.1 The World Bank Group and regional development banks . . . . . . . . . . . . . . 28610.8.1.2 Programmes and specialized agencies of the United Nations. . . . . . . . . . . . 28810.8.1.3 Development cooperation activities of the European Union and

    Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28910.8.1.4 The state of international development cooperation in the field of

    bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29110.8.2 Bioenergy strategies for developing countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    10.8.2.1 Combating energy poverty through off-grid rural energy provision . . . . . . 29310.8.2.2 Modernization of the energy sector and export production . . . . . . . . . . . . . 29510.8.2.3 Core elements of national bioenergy strategies for developing

    countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29610.8.3 Action under uncertainty: Consequences for active promotion policies . . . . . . . . . . . 300

    11 Research recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303

    11.1 Bioenergy use and the greenhouse gas balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30311.1.1 Improving greenhouse gas balancing of energy crop cultivation . . . . . . . . . . . . . . . . . .30311.1.2 Integrated assessment of climate change mitigation options in land and biomass

    use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30411.1.3 Sequestration of CO2 in depots and black carbon in soils . . . . . . . . . . . . . . . . . . . . . . . 305

    11.2 Sustainable bioenergy potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30511.2.1 Sustainable agriculture and energy crop cultivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30511.2.2 International research programmes on sustainable and economic bioenergy

    potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30611.2.3 Social sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

    11.3 Bioenergy and energy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30811.3.1 Technologies of bioenergy use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30811.3.2 Potential for using residues and waste for energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30911.3.3 Modernizing traditional bioenergy use to overcome energy poverty . . . . . . . . . . . . . 30911.3.4 Integrated technology development and assessment for bioenergy . . . . . . . . . . . . . . . 310

    11.4 Bioenergy and global land-use management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31011.4.1 Data on global land use and degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31011.4.2 Integrated scientific and economic land-use modelling . . . . . . . . . . . . . . . . . . . . . . . . . 31111.4.3 Agents and drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31111.4.4 Linkages between energy crop cultivation and food security . . . . . . . . . . . . . . . . . . . . 31111.4.5 Effects of changes in dietary patterns and lifestyles on climate and land use . . . . . . 311

    11.5 Shaping international bioenergy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31211.5.1 Managing global land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31211.5.2 Standard-setting and the WTO regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31211.5.3 Bioenergy policy and security policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31311.5.4 Developing commitments under the UNFCCC and CBD . . . . . . . . . . . . . . . . . . . . . . 31311.5.5 Methods of supporting decision-making under uncertainty . . . . . . . . . . . . . . . . . . . . . 313

  • 8/8/2019 Wbgu Jg2008 En

    17/392

    XVI Contents

    12 Recommendations for action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315

    12.1 Making bioenergy a consistent part of international climate policy . . . . . . . . . . . . . . . . . . . . . .316

    12.2 Introducing standards and certification for bioenergy and sustainable land use . . . . . . . . . . .318

    12.3 Regulating competition between uses sustainably . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32012.3.1 Developing an integrated bioenergy and food security strategy . . . . . . . . . . . . . . . . . 32012.3.2 Taking greater account of the coupling of land use, food markets and energy

    markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32112.3.3 Taking greater account of increasing pressure on land use caused by changing

    dietary habits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32212.3.4 Implementing biodiversity policy for sustainable energy crop cultivation . . . . . . . . . 32312.3.5 Improving long-term water and soil protection through energy crop cultivation . . . 324

    12.4 Targeting bioenergy promotion policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32512.4.1 Reforming agricultural subsidies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32512.4.2 Advancing energy recovery from biogenic wastes and residues . . . . . . . . . . . . . . . . . . 32612.4.3 Reorienting technology policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

    12.5 Harnessing sustainable bioenergy potential in developing and newly industrializingcountries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328

    12.6 Building structures for sustainable global bioenergy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

    13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333

    14 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

  • 8/8/2019 Wbgu Jg2008 En

    18/392

    Boxes

    Box 2.1-1 Terminology: Bioenergy, biofuels, agrofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Box 3.2-1 A persons calorie requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Box 4.1-1 Applying the substitution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Box 4.1-2 Current bioenergy use and promotion policy in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . 45Box 4.1-3 Current bioenergy policy and use in the EU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Box 4.2-1 Defining the concept of marginal land . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Box 5.2-1 Has peak phosphorus already been reached? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Box 5.2-2 Country study: China competition of food versus fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Box 5.4-1 Protected areas: Situation and trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Box 5.4-2 Country study: Indonesia competition with nature conservation . . . . . . . . . . . . . . . . . . . 77Box 5.4-3 Invasive alien species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Box 5.5-1 Land requirement of solar energy and photosynthesis compared . . . . . . . . . . . . . . . . . . . . 82Box 5.5-2 Black carbon sequestration as a climate change mitigation option . . . . . . . . . . . . . . . . . . . 87Box 6.1-1 Types of potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Box 6.7-1 Socio-economic and political indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Box 6.7-2 Country study: India using marginal land for biofuel production . . . . . . . . . . . . . . . . . . 124Box 6.8-1 Potential for reducing the atmospheric CO2 concentration by deploying bioenergy

    with carbon capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Box 7.1-1 Sugar cane (Saccharum officinarum L.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Box 7.1-2 Oil palm (Elaeis guineensisJacq.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Box 7.1-3 Jatropha ( Jatropha curcas L.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Box 7.1-4 Maize (Zea mays L.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Box 7.1-5 Rape (Brassica napus ssp.oleifera L.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Box 7.1-6 Triticale (Triticum aestivum L. xSecale cerealeL.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Box 7.1-7 Miscanthus grass (Miscanthus sinensisAnderss.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Box 7.1-8 Switchgrass (Panicum virgatum L.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Box 7.1-9 Algae as bioenergy sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Box 7.1-10 Short-rotation plantations (SRPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Box 7.1-11 Potentials and risks of green genetic engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Box 7.2-1 Bioenergy: Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Box 7.2-2 Biomethane: A highly promising bioenergy carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Box 7.2-3 Declared efficiencies: Methodology, inventory boundaries and calculation . . . . . . . . . . . 162Box 7.2-4 The allocation method: Its application for determining specific energy expenditure . . . 167Box 7.3-1 Handling co-products The allocation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171Box 7.3-2 Quantifying emissions from direct and indirect land-use change . . . . . . . . . . . . . . . . . . . . 172Box 7.3-3 GHG mitigation through efficiency improvements in traditional biomass use . . . . . . . . 176Box 8.2-1 Health-related and ecological impacts of traditional biomass use . . . . . . . . . . . . . . . . . . . 202Box 8.2-2 Country study: Uganda Tackling traditional bioenergy use through active

    bioenergy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Box 8.2-3 Development opportunities presented by bioenergy production for supra-regional

    internal markets and exports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Box 8.2-4 Country study: Brazil a newly industrializing country with a long-standing

    bioenergy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

    Box 10.2-1 Harvested wood products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

  • 8/8/2019 Wbgu Jg2008 En

    19/392

    XVIII Boxes

    Box 10.2-2 Reducing emissions from deforestation and degradation (REDD) in the UNFCCC . . 227Box 10.2-3 International payments to conserve carbon stocks and sinks . . . . . . . . . . . . . . . . . . . . . . . 227Box 10.2-4 The Global Environment Facility and bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229Box 10.3-1 Ways of accounting for indirect land-use changes in a bioenergy standard . . . . . . . . . . . 235Box 10.3-2 EU sustainability criteria for liquid biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238Box 10.3-3 Roundtable on Sustainable Biofuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242Box 10.3-4 The Global Bioenergy Partnership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243Box 10.3-5 Vision of a Global Commission for Sustainable Land Use . . . . . . . . . . . . . . . . . . . . . . . . . 245Box 10.4-1 The role of the FAO in global bioenergy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Box 10.4-2 The World Agricultural Council as a new stakeholder in global agricultural policy . . . . 257Box 10.4-3 Key recommendations of the Departmental Working Party of the German

    Federal Government on World Food Affairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260Box 10.5-1 Payments for ecosystem services in Costa Rica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264Box 10.5-2 Establishing an international market in certified conservation services . . . . . . . . . . . . . . 265Box 10.5-3 Climate protection and biodiversity conservation within international climate policy . . 267Box 10.6-1 Policy implications of biomass use as industrial feedstock . . . . . . . . . . . . . . . . . . . . . . . . . 271Box 10.8-1 Country study: India Jatropha cultivation as a development model . . . . . . . . . . . . . . . . 297Box 11-1 Bioenergy and land use: The key research areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304Box 12.2-1 WBGUs minimum standards for bioenergy production . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

  • 8/8/2019 Wbgu Jg2008 En

    20/392

    Table 4.1-1 Production of fuel ethanol in the main production countries and worldwide(figures for 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    Table 4.1-2 Global biodiesel production in selected production countries and worldwide(figures for 2007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Table 4.1-3 Global cultivation area, production and net trade for grain and sugar . . . . . . . . . . . . . . . . 39Table 4.1-4 Global cultivation area, production and net trade for selected oil seeds and plant oils . . 40Table 4.1-5 Examples of bioenergy promotion policy in selected countries . . . . . . . . . . . . . . . . . . . . . . 42Table 4.2-1 Qualitative rating of the effects of direct land-use changes on biological diversity,

    the quantity of carbon in the soil and vegetation and greenhouse gas losses duringconversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Table 5.2-1 Average available food energy in different world regions (kcal per person per day) . . . . 58Table 5.2-2 Consumption of meat, milk and milk products in various world regions . . . . . . . . . . . . . . 59Table 5.2-3 Farmland per person in various world regions (ha/person) . . . . . . . . . . . . . . . . . . . . . . . . . 61Table 5.2-4 Land requirement in m2/kg of food in various countries (2006, m2/kg yield) . . . . . . . . . . . 61Table 5.2-5 Land requirement of foods in relation to the energy content of the consumable

    product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Table 5.2-6 Human appropriation of the net primary production of natural ecosystems (HANPP):

    regional distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Table 5.2-7 Countries with high food insecurity which as net importers of oil and cereals are

    particularly vulnerable to price rises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Table 5.2-8 Proportion of households in selected countries which produce food above the

    subsistence level and are therefore net sellers of staple foods . . . . . . . . . . . . . . . . . . . . . . . 68Table 5.3-1 Production of and world trade in forest products. Trade figures are the mean of

    import and export from official statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Table 5.4-1 Desirable ecological properties of energy crops and their relevance to the risk of

    invasiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Table 5.5-1 Time dynamics of climate change mitigation options in land use . . . . . . . . . . . . . . . . . . . . 88Table 5.6-1 Water use for energy crops for ethanol production in selected countries . . . . . . . . . . . . . . 92Table 6.1-1 Technical (TP), economic (EP) and sustainable potential (SP) of bioenergy in EJ

    per year from various studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Table 6.4-1 Proportions of protected areas for the conservation of wilderness areas and

    biodiversity hotspots under the two scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Table 6.5-1 Definition of the four land-use scenarios used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Table 6.5-2 Potential cultivation areas and bioenergy potentials in 2000 and 2050 for the four

    land-use scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Table 6.5-3 Bioenergy potentials for the years 2000 and 2050 in different world regions

    (Figure 6.5-5) for four land-use scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Table 7.1-1 Advantages and disadvantages of energy crop cultivation in monocultures . . . . . . . . . . 135Table 7.1-2 Advantages and disadvantages of short-rotation plantations . . . . . . . . . . . . . . . . . . . . . . . 144Table 7.1-3 Advantages and disadvantages of agroforestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Table 7.1-4 Advantages and disadvantages of reduced-impact logging in tropical rainforests . . . . . . 146Table 7.1-5 Summary and qualitative rating of the productivity and impact on biological

    diversity and carbon sequestration in the soil of the proposed cultivation systems . . . . . 150

    Table 7.2-1 Selection of the different cultivation systems examined by WBGU . . . . . . . . . . . . . . . . . 158

    Tables

  • 8/8/2019 Wbgu Jg2008 En

    21/392

    XX Tables

    Table 7.2-2 List of technical conversion processes examined by WBGU . . . . . . . . . . . . . . . . . . . . . . . 159Table 7.2-3 Characteristic values for the vehicle types used in the mobility pathways,

    as per the New European Driving Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Table 7.2-4 Efficiencies and allocation factors for the bioenergy pathways with CHP analysed

    in the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167Table 7.3-1 Default values for per-hectare GHG emissions induced by direct land-use change

    for various species utilizable as energy crops, in kg CO2 per ha and year . . . . . . . . . . . . . 172Table 7.3-2 GHG emissions per unit energy induced by direct (dLUC) and indirect (iLUC)

    land-use change for different cultivation systems and different previous uses . . . . . . . . . 173Table 7.3-3 Emissions of the fossil reference systems used by WBGU to derive the GHG

    abatement potentials of the individual bioenergy pathways . . . . . . . . . . . . . . . . . . . . . . . . 175Table 7.3-4 Gross energy yields per hectare used to calculate GHG emissions in the individual

    bioenergy pathways, and range calculated from the various per-hectare yields citedin the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    Table 7.3-5 Production costs of fossil reference systems and reference values for specific emissionsused by WBGU to derive the GHG abatement costs of the individual bioenergypathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    Table 8.2-1 People who are dependent on biomass as the primary source of energy for cooking . . . 202Table 9.2-1 Synthesis of the evaluation of bioenergy pathways, broken down according tocultivation systems, technical analysis and greenhouse gas balance . . . . . . . . . . . . . . . . . . 214Table 10.2-1 Inventory and accounting practices employed to date in the first commitment period

    of the Kyoto Protocol for the greenhouse gas balance chain associated with the useof bioenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

    Table 10.3-1 Selected examples of existing standards and certification systems, and those in thedevelopment phase, for biomass products by sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

  • 8/8/2019 Wbgu Jg2008 En

    22/392

  • 8/8/2019 Wbgu Jg2008 En

    23/392

    XXII Figures

    change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109Figure 6.4-7 Global distribution of forested areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110Figure 6.5-1 Geographical distribution of possible energy crop cultivation areas for

    Scenario 1 (high farmland requirement, high biodiversity conservation) . . . . . . . . . .112Figure 6.5-2 Geographical distribution of possible energy crop cultivation areas for

    Scenario 2 (high farmland requirement, low biodiversity conservation) . . . . . . . . . . .113Figure 6.5-3 Geographical distribution of possible energy crop cultivation areas for

    Scenario 3 (low farmland requirement, high biodiversity conservation) . . . . . . . . . . .114Figure 6.5-4 Geographical distribution of possible energy crop cultivation areas for

    Scenario 4 (low farmland requirement, low biodiversity conservation) . . . . . . . . . . . .115Figure 6.5-5 The ten world regions used in this chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117Figure 6.5-6 Simulated biomass yields in the year 2050 for grasses in (a) non-irrigated and

    (b) irrigated cultivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118Figure 6.5-7 Simulated biomass yields in the year 2050 for trees in (a) non-irrigated and

    (b) irrigated cultivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119Figure 6.5-8 Simulated biomass yields in the year 2050 for grasses in (a) non-irrigated and

    (b) irrigated cultivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120Figure 6.5-9 Simulated biomass yields in the year 2050 for trees in (a) non-irrigated and

    (b) irrigated cultivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121Figure 6.6-1 Geographical distribution of livestock density worldwide . . . . . . . . . . . . . . . . . . . . . .122Figure 6.7-1 Regions with potential for sustainable bioenergy from crops and countries that

    are affected by state fragility or collapse of the state . . . . . . . . . . . . . . . . . . . . . . . . . . .125Figure 7.1-1 Schematic illustration of different land-use methods and their effects on

    ecosystem services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134Figure 7.2-1 Simplified representation of typical feedstock life cycles for final or useful

    energy provision from biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152Figure 7.2-2 Inventory boundaries for calculation of efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163Figure 7.2-3 Overview of exergetic and energetic efficiencies (with and without light yellow

    bars respectively) of the bioenergy pathways examined . . . . . . . . . . . . . . . . . . . . . . . .165Figure 7.2-4a Production costs of bioenergy pathways for electricity generation . . . . . . . . . . . . . . .168

    Figure 7.2-4b Production costs of bioenergy pathways for heat production . . . . . . . . . . . . . . . . . . . .168Figure 7.2-4c Production costs of bioenergy pathways in the transport sector . . . . . . . . . . . . . . . . . .169Figure 7.3-1 GHG emissions from direct (dLUC) and indirect (iLUC) land-use change for

    different energy crops and previous land uses, in relation to the gross energycontent of the biomass utilized in t CO2eq per TJ biomass . . . . . . . . . . . . . . . . . . . . . .174

    Figure 7.3-2 Percentage reduction of GHG emissions by the substitution of fossil fuelsrelative to a fossil reference system, in relation to final or useful energy forselected bioenergy pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

    Figure 7.3-3 Absolute GHG emissions reduction through the substitution of fossil fuels fordifferent energy crops in (a) the temperate climate zone and (b) the tropicalclimate zone, in relation to the allocated cropping area (Box 7.3-1) in t CO2eqper ha and year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

    Figure 7.3-4 Absolute GHG emissions reduction through the substitution of fossil fuels fordifferent bioenergy pathways, in relation to the gross energy content of thebiomass utilized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

    Figure 7.3-5 Sensitivity of absolute GHG reduction in relation to the quantity of biomassutilized relative to the reference system, for the example of the conversion of wood from short-rotation plantations to biomethane for a combined-cyclepower plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

    Figure 7.3-6 GHG abatement costs incurred by the use of different bioenergy pathways,calculated in accordance with Equation 7.3-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

    Figure 8.1-1 Efficiency gain through the transition to renewable energies involving thedirect generation of electricity from solar, hydro and wind sources . . . . . . . . . . . . . . .190

    Figure 8.1-2 Electricity sector transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191Figure 8.1-3 Comparison of the efficiencies of fossil or biogenic fuel use in vehicles with

    internal combustion motors and in electric vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . .192

  • 8/8/2019 Wbgu Jg2008 En

    24/392

    XXIIIFigures

    Figure 8.1-4 Efficiency gain in the transport sector: energy input and efficiency of aconventional drive system using fossil and biogenic fuels compared to those of an electric drive using renewable, directly generated electricity from hydro,solar and wind sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

    Figure 8.1-5 Transport sector transformation: key component renewable electromobility . . . . . . .193Figure 8.1-6 Efficiency gain through using ambient heat by means of heat pumps running

    on renewable electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193Figure 8.1-7 Heat sector transformation: through CHP expansion and the greater use of

    electric heat pumps, process and space heat demand can be met entirely in future . .194Figure 8.1-8 Energy system transformation the example of Germany, an industrialized

    country: five key components can deliver both energy and climate efficiency . . . . . .195Figure 8.1-9 Comparison of different conversion pathways in the transport sector in terms

    of the mechanical energy utilizable at the wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197Figure 8.1-10 Car mileage per unit of primary energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198Figure 8.1-11 Future, sustainable energy supply structures in industrialized countries . . . . . . . . . . .200Figure 8.1-12 First stage of sustainable bioenergy use in industrialized countries . . . . . . . . . . . . . . .201Figure 8.1-13 Second stage of sustainable bioenergy use in industrialized countries . . . . . . . . . . . . .201Figure 10.4-1 Potential regions for bioenergy and countries classified as LIFDCs . . . . . . . . . . . . . .252Figure 10.8-1 Decision tree for strategic national choices on biofuel development indeveloping and newly industrializing countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298

  • 8/8/2019 Wbgu Jg2008 En

    25/392

    Acronyms and Abbreviations

    ACP African, Caribbean and Pacific Group of StatesADB Asian Development BankAfDB African Development BankBEFS Bioenergy and Food Security Project (FAO)BMELV Bundesministerium fr Ernhrung, Landwirtschaft und Verbraucherschutz

    [Federal Ministry of Food, Agriculture and Consumer Protection, Germany]BMU Bundesministerium fr Umwelt, Naturschutz und Reaktorsicherheit

    [Federal Ministry for the Environment, Nature Conservation and Nuclear Safety,Germany]

    BMZ Bundesministerium fr wirtschaftliche Zusammenarbeit und Entwicklung[Federal Ministry for Economic Cooperation and Development, Germany]

    BtL Biomass-to-LiquidCAP Common Agricultural Policy (EU)CBD Convention on Biological DiversityCCS Carbon Capture and StorageCDM Clean Development Mechanism (Kyoto Protocol)CGIAR Consultative Group on International Agricultural ResearchCHP Combined Heat and Power

    CITES Convention on International Trade in Endangered Species of Wild Faunaand Flora (UN)COP Conference of the PartiesCO2 Carbon DioxideCRIC Committee for the Review of the Implementation of the Convention (UNCCD)CPD Centers of Plant Diversity (IUCN)CSD Commission on Sustainable Development (UN)CST Committee on Science and Technology (UNCCD)DALY Disability Adjusted Life YearsdLUC Direct Land-Use ChangeDM Dry MatterEEG Renewable Energy Sources Act (Germany)EGS Environmental Goods and Services (WTO)EMPA Swiss Federal Laboratories for Materials Testing and ResearchETI Ethical Trading InitiativeETS Greenhouse Gas Emission Trading Scheme (EU)EU European UnionEUGENE European Green Electricity NetworkEUIE EU-Initiative Energy for Poverty Reduction and Sustainable DevelopmentFATF Financial Action Task Force on Money LaunderingFAO Food and Agriculture Organization of the United NationsFLO Fairtrade Labelling Organizations InternationalFSC Forest Stewardship CouncilGATT General Agreement on Tariffs and TradeGBEP Global Bioenergy Partnership (FAO)GDP Gross Domestic Product

  • 8/8/2019 Wbgu Jg2008 En

    26/392

    XXV

    GEF Global Environment Facility (UNDP, UNEP, World Bank)GHG Greenhouse GasGIS Geographical Information SystemGLASOD The Global Assessment of Human Induced Soil Degradation (ISRIC)GSP Generalized System of Preferences (EU)

    GSPC Global Strategy for Plant Conservation (CBD)GTZ Deutsche Gesellschaft fr Technische Zusammenarbeit[German Society on Development Cooperation]

    GuD Gas-steam Power PlantGMO Genetically Modified OrganismsHANPP Human Appropriation of Net Primary ProductionHCVA High Conservation Value AreasIBEP International Bioenergy Platform (FAO)IAASTD International Assessment of Agricultural Knowledge, Science and Technology

    for DevelopmentIADB Inter-American Development BankICRISAT International Crops Research Institute for the Semi-Arid Tropics (CGIAR)ICSB International Conference on Sustainable Bioenergy (recommended)ICSU International Council for ScienceIDA International Development Association (World Bank)IEA International Energy Agency (OECD)IFAD International Fund for Agricultural DevelopmentIFC International Finance Corporation (World Bank)IFOAM International Federation of Organic Agriculture MovementsIFPRI International Food Policy Research Institute (FAO)IGBP International Geosphere Biosphere Program (ICSU)IHDP International Human Dimensions Programme on Global Environmental Change

    (ISSC, ICSU)ILO International Labour Organization (UN)iLUC Indirect Land-Use Change

    IPCC Intergovernmental Panel on Climate Change (WMO, UNEP)IRENA International Renewable Energy AgencyISCC International Sustainability and Carbon Certification (BMELV)ISRIC International Soil Reference and Information CentreISSC International Social Science Council (UNESCO)ITTO International Tropical Timber OrganizationIUCN World Conservation UnionIMF International Monetary FundKfW German Development BankLDC Least Developed CountriesLIFDC Low Income Food Deficit Countries (FAO, WFP)LULUCF Land Use, Land-Use Change and ForestryMA Millennium Ecosystem Assessment (UN)MDG Millennium Development Goals (UN)MERCOSUR Mercado Comn del Sur (Argentina, Brazil, Paraguay, Uruguay)MESA Multilaterales Energiesubventionsabkommen (recommended)MODIS Moderate Resolution Imaging SpectroradiometerNaWaRo Nachwachsende RohstoffeNEDC New European Driving CycleNGO Non-governmental OrganizationOECD Organisation for Economic Co-operation and DevelopmentPEFC Programme for the Endorsement of Forest Certification SchemesPIK Potsdam Institute for Climate Impact ResearchPSA Programm Pagos por Servicios Ambientales (Costa Rica)REC Renewable Energy CertificatesREDD Reducing Emissions from Deforestation and Degradation (UNFCCC)

    Akronyms

  • 8/8/2019 Wbgu Jg2008 En

    27/392

    XXVI Akronyms

    REEEP Renewable Energy and Energy Efficiency Partnership (UK)REN21 Renewable Energy Policy Network for the 21st CenturyRIL Reduced-impact LoggingRSB Roundtable on Sustainable BiofuelsRSPO Roundtable on Sustainable Palmoil

    RTRS Roundtable on Responsible Soy Association (Switzerland)SAFE Silvorable Forestry for Europe ProjectSAI Social Accountability InternationalSAN Sustainable Agriculture Network (Rainforest Alliance)SRF Short-rotation Forestry; or: Short-rotation CoppiceSRU Sachverstndigenrat fr Umweltfragen

    [Council of Environmental Experts, Germany]UBA Umweltbundesamt

    [Federal Environment Agency]UNCCD United Nations Convention to Combat Desertification in Countries Experiencing

    Serious Drought and/or Desertification, Particularly in AfricaUNCTAD United Nations Conference on Trade and DevelopmentUNDP United Nations Development ProgrammeUNEP United Nations Environment ProgrammeUNESCO United Nations Educational, Scientific and Cultural OrganizationUNFCCC United Nations Framework Convention on Climate ChangeUNIDO United Nations Industrial Development OrganisationWBGU Wissenschaftlicher Beirat der Bundesregierung Globale Umweltvernderungen

    [German Advisory Council on Global Change]WCD World Commission on Dams (World Bank, IUCN)WCMC World Conservation Monitoring Centre (UNEP)WDPA World Database on Protected Areas (UNEP, IUCN)WFP World Food Programme (UN)WHO World Health Organization (UN)WSSD World Summit on Sustainable DevelopmentWTO World Trade OrganizationWWF World Wide Fund for Nature

  • 8/8/2019 Wbgu Jg2008 En

    28/392

    Summary for policy-makers

    Global bioenergy policy for sustainabledevelopment: WBGUs guiding vision

    The incipient global bioenergy boom is giving riseto vigorous and strongly polarized debate. Differ-ent underlying aims, such as reducing dependenceon imported oil and gas or using biofuels to reducethe CO2 emissions of road traffic, predominate in dif-ferent quarters and shape the political agenda. Sup-porters of bioenergy argue that, at a time of sharplyincreasing demand for energy, bioenergy can help tosecure energy supply and to mitigate climate changeas well as create development opportunities, particu-larly in the rural areas of industrialized and devel-oping countries. Critics, on the other hand, main-tain that growing energy crops will heighten land-use conflicts as food cultivation, nature conservationand bioenergy production compete for land, and that

    bioenergy is likely to impact negatively on the cli-mate. Because of the dynamics and huge complex-ity of the issue, as well as the considerable scientificuncertainty and the multiplicity of interests involved,it has not as yet been possible to carry out an inte-grated assessment of the contribution bioenergy canmake to sustainable development. WBGU aims toshow that the sustainable use of bioenergy is possibleand to outline how to exploit opportunities while atthe same time minimizing risks.

    To that end, WBGU presents an integrated visionthat will provide policy-makers clear guidance for thedeployment of bioenergy. The principle behind thechange of direction that is required must in WBGUsview be the strategic role of bioenergy as a compo-nent of the global transformation of energy systemstowards sustainability. The guiding vision is inspiredby two objectives:

    the use of bioenergy should contribute tomitigating climate change by replacing fossil fuelsand thus helping to reduce greenhouse gas emis-sions in the world energy system. The fact thatbioenergy carriers can be stored and used to pro-vide control energy in power grids can make astrategically important contribution to stabilizingelectricity supplies when there is a high propor-

    tion of wind and solar energy in the energy sys-tems of industrialized, newly industrializing anddeveloping countries. In the long term, bioenergyin combination with carbon dioxide capture andsecure storage can even help to remove some of the emitted CO2from the atmosphere.

    the use of bioenergy can help to over-come energy poverty. In the first place this involvessubstituting the traditional forms of bioenergy usein developing countries that are harmful to peo-ples health. The modernization of traditionalbioenergy use can reduce poverty, prevent dam-age to health and diminish pressures placed onnatural ecosystems by human uses. Some 2.5 bil-lion people currently have no access to affordableand safe forms of energy (such as electricity andgas) to meet their basic needs. Modern yet sim-ple and cost-effective forms of bioenergy can play

    an important part in significantly reducing energypoverty in developing and newly industrializingcountries.

    WBGUs central message is that use should be madeof the global sustainable potential of bioenergy, pro-vided that risks to sustainability can be excluded. Inparticular, the use of bioenergy must not endangerfood security or the goals of nature conservation andclimate protection.

    If this ambitious guiding vision is to be realized,politicians must play their part in shaping the pro-cesses involved. It is essential to avoid undesirabledevelopments that could prevent proper use beingmade of the available opportunities. Some of thepolitical measures that are currently in place suchas inappropriate incentives under the FrameworkConvention on Climate Change or the EuropeanUnions quota specifications for biofuels actuallypromote bioenergy pathways that exacerbate climatechange. It is also important that bioenergy does nottrigger competition for land use in a way that putsfood security at risk or leads to the destruction of rainforests or of other natural and semi-natural eco-systems. When assessing the use of energy crops it isimportant to take account of both direct and indi-rect land-use changes, since these changes have a cru-

  • 8/8/2019 Wbgu Jg2008 En

    29/392

    2 Summary for policy-makers

    cial impact on the greenhouse gas balance and on therisks to biological diversity. By contrast, the use of biogenic wastes and residues entails far fewer risksfor land use.

    On account of the many possible bioenergy path-

    ways, their different characteristics, and the glo-bal linkages among their effects, it is not possible toarrive at a single sweeping assessment of bioenergy.The analysis must be more specific, and in its reportWBGU therefore considers bioenergy from an inter-disciplinary, systemic and global perspective. WBGUhas created an analysis matrix; this involves definingecological and socio-economic sustainability criteriafor the use of bioenergy, conducting an innovativeglobal analysis of the potential of bioenergy on thebasis of these criteria, and finally evaluating specificbioenergy pathways in terms of their greenhouse gasbalance and environmental impacts over the entirelife cycle, ta