Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

88
Tucson Electric Power Company Page ‐ 1 Tucson Electric Power 2016 Preliminary Integrated Resource Plan March 1, 2016

Transcript of Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

Page 1: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐1

TucsonElectricPower

2016PreliminaryIntegratedResourcePlan

March1,2016

Page 2: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐2

 

Page 3: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐3

Foreword  New environmental regulations, emerging technologies and changing energy needs have reinforced the importance of long‐term resource planning to Tucson Electric Power (“TEP”) and other electric utilities.  Whatever the future may bring, our 2016 preliminary Integrated Resource Plan (“IRP”) outlines our plan to ensure that TEP’s safe, affordable and reliable service remains a constant in our complex, evolving industry.   We will continue to expand our use of cost‐effective renewable energy resources and energy efficiency programs for customers. We expect our renewble energy portfolio to exceed 370 megawatts (“MW”) by the end of 2016. We also will expand our energy effficiency resources through several new programs available this year. In the future, demand response partnerships with customers could help TEP manage peak load demands while reducing the need for new infrastructure.  As requested by the Commission, this preliminary IRP report addresses the status of emerging resource options like energy storage technologies and small nuclear reactors. Two 10‐MW storage projects will be installed on TEP’s local distribution system in 2016, and we will continue to evaluate the potential for other new technologies as part of our resource planning process.  We will study how natural gas‐fired resources can be best used to replace existing coal capacity. While we remain open to the possibility of using additional natural gas power plants to meet base load requirements, we will also study fast‐response generating resources like reciprocating natural gas engines, which can be used to stabilize intermittent renewable resources.    While the status of the Clean Power Plan (“CPP”) is in question after the U.S. Supreme Court issued a stay suspending its enforcement pending further ligitation,TEP continues to evaluate its potential impact. The resource plan outlined in this document should put us in a strong position to comply with the new rules, which would require a 32‐percent reduction in carbon dioxide (“CO2”) emissions from Arizona power plants.  Our drive to reduce CO2 emissions must be balanced against our continued need for reliable, cost‐effective generating resources, such as  Springerville Generating Station (“SGS”). Although we previously decided to acquire half of Unit 1 upon the expiration of TEP’s long‐term lease, we are preparing for the potential acquisition of the other half as part of the resolution of ongoing legal disputes with the other co‐owners of that 387‐MW unit. TEP also owns Unit 2 at that eastern Arizona facility, so this would anchor our long‐term baseload resource in our newest and most efficient coal plants.  TEP will continue to look for opportunities to economically reduce its interest in its other coal‐fired facilities. Strategies may include changes in plant ownership shares, unit shutdowns or the sale of generation assets. We remain committed to a long‐term strategy that diversifies our energy resource portfolio as demonstrated by recent coal plant retirement commitments at our Sundt and San Juan generating stations.  TEP will continue to look for new resource options and cost‐effective ways of providing reliable electric service to our customers. We intend to provide more robust resource planning information in TEP’s final IRP in 2017.   David G. Hutchens President and CEO    

Page 4: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐4

Acknowledgements 

TucsonElectricPowerCompanyIRPTeam

VictorAguirre,Manager,ResourcePlanningJeffYockey,Manager,EnvironmentalandLong‐TermPlanningKevinBattaglia,LeadResourcePlannerLucThiltges,LeadResourcePlannerGregStrang,SeniorForecastingAnalystStephanieBrowne‐Schlack,SeniorForecastingAnalystDeniseRicherson‐Smith,Director,CustomerServices&Programs,CustomerCareCenterRonBelval,Manager,TransmissionPlanningJimTaylor,SeniorDirector,T&DOperationsJeffKrauss,Manager,RenewableEnergyJoeBarrios,Supervisor,MediaRelations&RegulatoryCommunicationsErikBakken,SeniorDirector,TransmissionandEnvironmentalServicesMikeSheehan,SeniorDirector,FuelsandResourcePlanning

IRPConsultantsandForecastingServices

PaceGlobalhttp://www.paceglobal.com/GaryW.Vicinus,ExecutiveVicePresident,‐ConsultingServicesMelissaHaugh‐ConsultingServicesAnantKumar‐ConsultingServicesWoodMackenzie‐ConsultingServiceshttp://public.woodmac.com/public/homeEPIS‐AuroraXMPSoftwareConsultingServiceshttp://epis.com/

Page 5: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐5

TABLEOFCONTENTSForeword............................................................................................................................................................................................................3Acknowledgements........................................................................................................................................................................................4

CHAPTER1‐EXECUTIVESUMMARY2016PreliminaryIntegratedResourcePlan......................................................................................................................................9UpdatesonTEP’sResourcePlanningStrategySincethe2014IRP.......................................................................................10CoalResources...............................................................................................................................................................................................10NaturalGasResources................................................................................................................................................................................13TransmissionResources............................................................................................................................................................................13Targeting30%Renewablesby2030...................................................................................................................................................14SupportingFutureRenewableIntegration.......................................................................................................................................14NaturalGasReciprocatingEngines......................................................................................................................................................14BatteryStorage..............................................................................................................................................................................................152016EnergyEfficiencyImplementationPlan.................................................................................................................................15CompliancewiththeCleanPowerPlan..............................................................................................................................................16EnergyEfficiencyintheCleanPowerPlan........................................................................................................................................20PowerGenerationandWaterImpactsofResourceDiversification......................................................................................22

CHAPTER2‐LOADFORECASTGeographicalLocationandCustomerBase.......................................................................................................................................25LoadForecastProcess................................................................................................................................................................................27RetailEnergyForecast................................................................................................................................................................................28PeakDemandForecast...............................................................................................................................................................................29DataSourcesUsedinForecastingProcess........................................................................................................................................29

CHAPTER3‐LOADSANDRESOURCESFutureLoadObligations............................................................................................................................................................................34SystemResourceCapacity........................................................................................................................................................................35PreliminaryLoadsandResourceAssessment.................................................................................................................................36CommunityScaleRenewablesandDistributedGeneration......................................................................................................37OverviewoftheUNSRenewablePortfolio........................................................................................................................................39EnergyEfficiency..........................................................................................................................................................................................40Transmission..................................................................................................................................................................................................42PinalCentraltoTortolita500kVTransmissionUpgrade..........................................................................................................43

Page 6: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐6

CHAPTER4‐EMERGINGTECHNOLOGIESSmallModularNuclearReactors...........................................................................................................................................................45ReciprocatingInternalCombustionEngines....................................................................................................................................47TheFutureoftheDistributionGrid......................................................................................................................................................49EnergyStorage...............................................................................................................................................................................................51TEPEnergyStorageProject.....................................................................................................................................................................54Lazard’sStorageAnalysis:KeyFindings............................................................................................................................................55CostCompetitiveStorageTechnologies.............................................................................................................................................55FutureEnergyStorageCostDecreases...............................................................................................................................................56

CHAPTER5‐OTHERRESOURCEPLANNINGTOPICS

EnergyImbalanceMarket.........................................................................................................................................................................57NaturalGasStorage.....................................................................................................................................................................................58TheIntegrationofRenewables...............................................................................................................................................................60UtilityOwnershipinNaturalGasReserves.......................................................................................................................................62

CHAPTER6‐FUTURERESOURCEASSUMPTIONSFutureResourceOptionsandMarketAssumptions.....................................................................................................................65GenerationResources–MatrixofApplications..............................................................................................................................66ComparisonofResources..........................................................................................................................................................................67LevelizedCostComparisons....................................................................................................................................................................68RenewableTechnologies–CostDetails.............................................................................................................................................69ConventionalTechnologies–CostDetails.........................................................................................................................................70Lazard’sLevelizedCostofEnergyAnalysis:KeyFindings.........................................................................................................71CostCompetivenessofAlternativeEnergyTechnologies..........................................................................................................71TheNeedforDiverseGenerationPortfolios.....................................................................................................................................72TheImportanceofRationalandTransparentEnergyPolicies................................................................................................72RenewableElectricityProductionTaxCredit(“PTC”).................................................................................................................73EnergyInvestmentTaxCredit(“ITC”)................................................................................................................................................74ImpactsofDecliningTaxCreditsandTechnologyInstalledCosts.........................................................................................76ImpactsofDecliningPTCandTechnologyInstalledCosts........................................................................................................77

Page 7: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐7

CHAPTER7‐MARKETASSSUMPTIONS&SCENARIOSMarketAssumptions...................................................................................................................................................................................78PermianNaturalGas...................................................................................................................................................................................78PaloVerde(7x24)MarketPrices...........................................................................................................................................................78EnergyStorageCase....................................................................................................................................................................................79SmallNuclearReactorsCase....................................................................................................................................................................79LowLoadGrowthCaseandExpandedEnergyEfficiency..........................................................................................................79ExpandedRenewablesCase.....................................................................................................................................................................80MarketBasedReferenceCase.................................................................................................................................................................80HighLoadGrowthCase‐LargeIndustrialCustomerExpansions..........................................................................................80FullCoalRetirementCase.........................................................................................................................................................................80

CHAPTER8‐RISKANALYSISANDSENSITIVITIESFuel,MarketandDemandRiskAnalysis............................................................................................................................................81PermianNaturalGasPrices......................................................................................................................................................................82PaloVerde(7x24)MarketPrices...........................................................................................................................................................83LoadGrowthSensitivity............................................................................................................................................................................84CoalPriceSensitivity...................................................................................................................................................................................85

CHAPTER9‐ACTIONPLAN2016–2017ActionPlan...........................................................................................................................................................................87

Page 8: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐8

Page 9: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐9

Executive Summary 

Introduction

TucsonElectricPowerCompany’s(TEP’sortheCompany’s)2016preliminaryIntegratedResourcePlan(“IRP”)introducesanddiscussestheissuesthatTEPplanstoanalyzeindetailforthefinal2017IntegratedResourcePlan.Thepurposeofthisreportistoprovideregulators,customersandotherinterestedstakeholdersanopportunitytounderstandthecurrentplanningenvironmentandprovidefeedbackontheCompany’sfutureresourceplanspriortothe2017finalIRPsubmittalonApril1,2017.InadditiontoprovidingasnapshotofTEP’scurrentloadsandresources,thisreportprovidesanoverviewofcurrentresourcecostassumptions,forwardmarketconditionsaswellasadiscussiononsomenewemergingtechnologies.ThisreportalsohighlightsanumberofchangesintheCompany’sresourceplanssincethe2014IRPanddiscussessomeofthenewinfrastructurerequirementsandpolicydecisionsthatmustbeaddressedoverthenextfewyears.

2016PreliminaryIntegratedResourcePlanRequirements

InaccordancewithDecisionNo.75269(DocketNo.E‐00000V‐15‐0094),theCommissionorderedtheArizonaloadservingentitiestofileapreliminaryIRPonMarch1,2016withthefinalIRPreportdueApril1,2017.ThisorderstipulatedthatthepreliminaryIRPincludesthefollowingtopics;

LoadForecast

LoadandResourceTable(includingtechnologydiscussion)

SourcesofAssumptionsandTechnologiesEvaluated

StatusupdateonCompany’splantoparticipateintheEnergyImbalanceMarket(“EIM”)

ScenariosRequestedin2014IRPDecision(No.75068)

EnergyStorage

SmallNuclearReactors

ExpandedRenewables(includingdistributedresources):biogas,solar,wind,geothermal,etc.

ExpandedEnergyEfficiency/demandresponse/integratedemandsidemanagement(whichshallincludetheeffectofmicro‐gridsandcombinedheatandpower)

ProposedSensitivities

FutureActionPlan

 

Chapter1

Page 10: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐10

Updates on TEP’s Resource Planning Strategy Since the 2014 IRP 

Coal Resources 

H.WilsonSundtGeneratingStation

In2015,thedepletionoftheCompany’sexistingcoalinventoryattheSundtGenerationStationandlownaturalgaspricessupportedthetransitiononSundtUnit4fromcoaltonaturalgastwoandhalfyearsaheadoftheDecember2017deadlineinitsagreementwiththeEnvironmentalProtectionAgency(“EPA”).ThistransitiontonaturalgaswillreduceTEP’snear‐termfuelsupplycostsforcustomersandmarkstheendofSundt’stwentysevenyearsofoperationsoncoal.

SanJuanGeneratingStation

AkeycomponentofTEP’s2014IRPwastheplannedreductionofcoalcapacityattheSanJuanGeneratingStation(“SanJuan”).InOctober2014,theEPApublishedafinalruleapprovingarevisedStateImplementationPlan(“SIP”)coveringBestAvailableRetrofitTechnology(“BART”)requirementsforSanJuan,whichincludestheclosureofUnits2and3byDecember2017andtheinstallationofSelectiveNon‐CatalyticReduction(“SNCR”)onUnits1and4.InJanuary2016,anewcoalsupplyandparticipantrestructuringagreementsbecameeffective,whichenablesTEPtoreduceitscoalcapacityatSanJuanfrom340MWto170MWbytheendofDecember2017.ThesenewagreementsenabletheCompanytotakeadvantageofsignificantlylowercoalsupplycostsforthenextsevenyearswhileprovidingacommerciallyviableoptiontoexitSanJuanUnit1inJuly2022.

FourCornersPowerPlant

Aspartoftheprevious2014IRPfiling,TEP’sresourceplansassumedthattheCompanywouldmaintainitsownershippositionsinUnits4and5attheFourCornersPowerPlant(“FCPP”)throughJuly2031.Thisdecisionwasaresultofthenegotiationsbetweentheco‐ownersatFourCornersandtheEPAthatresultedinanalternativeBARTcomplianceplanthatrequiredthepermanentclosureofUnits1,2,and3byJanuary1,2014andinstallationandoperationofSelectiveCatalyticReduction(“SCR”)controlsonUnits4and5byJuly31,2018.TEPexpectstheplantoperatortocompletetheSCRupgradesonbothunitsbyApril2018.

BarringanyfutureenvironmentalregulationsontheNavajoNationthatwouldsignificantlychangetheeconomicsoftheplant,TEPplanstoremainaplantparticipantthroughthetermofitsexistingcoalsupply(“CSA”)agreement,whichisJuly2031.TEPwillcontinuetoevaluatethelong‐termviabilityofitscoaloperationsatFCPPandwilldeterminewhetherornotitwillremaininthefacilitybeyond2031insubsequentIRPplanningcycles.TEPowns110MWor7%ofFourCornersUnits4and5.

NavajoGeneratingStation

InFebruary2013,theEPAissuedaproposedBARTrulefortheNavajoGeneratingStation(“NGS”)undertheRegionalHazeRuleoftheCleanAirAct.EPA'sproposalrequiredSCRemissioncontroltechnologytobeinstalledonallthreeNGSunitsby2018.GiventhedirecteconomicimpactsapotentialclosureofNGSwouldhaveontheNavajoandHopiTribes,theEPAinvitedtheplantownerstosubmita“Better‐than‐Bart”alternativethatwouldresultingreateremissionreductionsthanEPA’soriginalproposal.Asaresult,aTechnicalWorkGroup(“TWG”)wasformedandconsistedofrepresentativesfromtheCentralArizonaWaterConservationdistrict,theEnvironmentalDefenseFund,theGilaRiverIndianCommunity,theNavajoNation,SaltRiverProject,theU.S.DepartmentoftheInterior,andWesternResourceAdvocates.InJuly2013,theTWGsubmitted

Page 11: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐11

analternativeplantotheEPAforfinalconsideration.TheTWGproposalincludedtwoemissionreductionalternativesthatwouldachieve“Better‐than‐BART”results.Basedonthecurrentstatusofnegotiationswiththeowner‐participantsofNGS,bothLosAngelesDepartmentofWaterandPower(“LADWP”)andNVEnergy(“NVE”)havemadecommitmentstoexittheprojectbytheendof2019.WiththedepartureofLADWPandNVE,theremainingNGSparticipantswillceaseoperationsofoneofthree750MWunitsatthepowerplantbyJanuary1,2020andconsolidatetheremainingownershipintotheothertworemainingunits.Inaddition,thealternativethatTWGproposedrequiresSCRcontrolstobeinstalledby2030inorderforthefacilitytoremainin‐servicebeyondthatdate.InlightofthepotentialenvironmentalemissionguidelinesundertheCleanPowerPlan,andthesignificantcostofSCRinvestmentsrequiredtokeeptheplantinoperationbeyond2030,theCompanywillevaluatetheviabilityofitscoaloperationsatNGSandwilldeterminewhetherornotitwillremaininthefacilitybeyond2030insubsequentIRPplanningcycles.TEPowns168MWor7.5%ofNGSUnits1‐3.

SpringervilleGeneratingStation

Priorto2015,TEPoperated387MWor100%ofSpringervilleUnit1(“SGSUnit1”)underoperatingleasesandpursuanttoprojectagreementsenteredintoin1986.Today,TEPowns192MWor49.5%ofSGSUnit1.Theremaining195MWor50.5%ofSGSUnit1isownedbytwothird‐partyowners(the“Co‐Owners”).TEPcontinuestooperate100%ofSGSUnit1pursuanttoagreementsenteredintoin1986.

Aspartofthe2014IRP,TEPwasplanningtouseitsexpiringleaseobligationstoreduceitscoalcapacitycommitmentsonSGSUnit1from387MWto192MWattheendof2014.Beginninginlate2014,theCo‐OwnersinstitutedvariouslegalproceedingsagainstTEPregardingSGSUnit1.Additionally,sinceJanuary2015,theCo‐OwnershavefailedtopaytheirshareofO&MandcapitalexpensesofSGSUnit1.Inresponse,TEPfiledaseparatelegalproceedingtorecovertheseamounts.InFebruary2016,thepartiesagreedtoasettlementoftheselegalmatters,thetermsofwhichincludeTEP’sacquisitionoftheCo‐OwnersinterestinUnit1,subjecttoFERCapproval.ThisacquisitionwouldresultinatemporaryincreaseinTEP’scoal‐firedcapacity.

OverviewofCoal‐FiredGenerationinArizonaandNewMexico

Chapter5providesadetailedsummaryontheremainingeightcoal‐firedgeneratingplantslocatedinArizonaandNewMexico.ThissummaryonPage63providesanoverviewofcurrentplantoperations,ownershipparticipationaswellasanupdateonthestatusofcurrentoperatingandcoalsupplyagreements.

Page 12: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐12

TEP’sLong‐TermResourceDiversificationStrategy

AsshowninFigure1below,TEP’sexistinggenerationfleetfacesanumberofuncertaintiestiedtoplantparticipationandfinaloutcomesonStateImplementationPlanstiedtotheCleanPowerPlan(“CPP”).Giventhisuncertainty,TEPmayconsideroptionsthatincludechangesinplantownershipshares,unitshutdownsorsaleofgenerationassetstothirdparties.TEPiscommittedtofollowthroughonitslong‐termportfoliodiversificationstrategytotakeadvantageofothernear‐termopportunitiestoreduceitscoalexposureathighercostTEPownedcoalfacilities.TEPplanstofilemoredetailsonitsdiversificationstrategyinthefinalIRPthatisdueApril1,2017.

Figure1‐TEP’sLongTermResourceDiversificationStrategy

Page 13: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐13

Natural Gas Resources 

GilaRiverUnit3

InDecember2014,TEPandUNSElectricacquiredUnit3attheGilaRiverGeneratingStationfor$219million.GilaRiverUnit3isa550MWnaturalgascombined‐cyclepowerplantlocatedinGilaBend,Arizona.Today,lownaturalgaspricesmakeGilaRiverUnit3oneoflowestcostgenerationassetsforbothTEPandUNSElectric.GilaRiver’sfastrampingcapabilities,alongwithitsreal‐timeintegrationintoTEP’sbalancingauthority,providebothTEPandUNSElectricwithanidealresourcetosupporttheintegrationoffuturerenewables.

Transmission Resources 

PinalCentraltoTortolita500kVTransmissionUpgrade

InNovember2015,TEPenergizeditsnewest500kVtransmissionexpansionprojectatPinalCentral.ThePinalCentraltoTortolitalinewillhelpmeetTucson’sfutureenergydemandsbyaddingasecondextrahighvoltage(“EHV”)transmissionconnectionbetweenTucsonandthePaloVerdewholesalepowermarket.ThislinetiesintheexistingSaltRiverProjectSoutheastValleytransmissionprojectthatextendsfromPaloVerdetoPinalCentralintoTortolita.ThisnewtransmissioninterconnectionwillfurtherimproveTEP’saccesstoawiderangeofrenewableandwholesalemarketresourceslocatedinthePaloVerdeareawhileimprovingTEP’ssystemreliability.

Figure2‐TortolitaSubstation

Page 14: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐14

Targeting30%Renewablesby2030

AsstatedinTEP’sIRPfilingsandTEP’scurrentratecase,theCompanyplanstomeetatargetof30%ofTEP’sretailenergyneedswithrenewableenergyresourcesby2030.ThistargetisdoublethatofthecurrentArizonaRenewableEnergyStandardthattargets15%by2025(A.A.C.R14‐2‐1804).

Figure3–TEPPortfolioEnergyMix

SupportingFutureRenewableIntegration

AspartofthisIRPplanningcycle,TEPisevaluatinganumberoftechnologiestosupportTEP’srampupinrenewableresources.Technologiessuchasreciprocatingenginesandbatterystoragearetwotechnologiesbeingconsideredtosupportrenewableintegration.

NaturalGasReciprocatingEngines

Reciprocatingengines,whilenotnewtechnology,areemergingaspotentialalternativesinlarge‐scaleelectricgeneration.Advancesinengineefficiencyandtheneedforfast‐responsegenerationmakereciprocatingenginesaviableoptiontostabilizevariableandintermittentelectricdemandandrenewableresources.AspartoftheCompany’scommitmenttotargethigherlevelsofrenewables,TEPisevaluatingthecostandoperationalcharacteristicsofreciprocatingenginesasanalternativetobothframeandaeroderivativenaturalgascombustionturbines.Aspartofthe2017IRPfiling,TEPplanstoprovideanin‐depthanalysisoncosts,usesandpotentialbenefitsofthistechnologytosupportrenewableintegration.

Page 15: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐15

BatteryStorage

Inthespringof2015,TEPissuedarequestforproposals(“RFP”)forthedesignandconstructionofutility‐scaleenergystoragesystems.CurrentlyTEPisworkingwithtwovendorstofinalizetheplansfortwo10MWlithiumionbatterystorageprojects.While20MWrepresentsonly1%ofTEP’speakretailload,theseprojectsarelargeenoughtohaveameasurableimpactonsupportinggridoperations.Assumingtheperformancefromthesefirsttwoinstallationsisfavorable,TEPwouldthenconsiderfutureenergystorageprojectsasaviableoptionforregulationandfrequencyresponsetosupporttheexpandeduseofrenewableresources.BothoftheseprojectsawaitCommissionapprovalthroughTEP’s2016RenewableEnergyStandardandTariffImplementationPlan(A.A.C.R14‐2‐1813)(DocketE‐01933A‐15‐0239).Ifapproved,TEPanticipatesthatthependingstorageprojectswillbeinserviceduringtheearlypartof2017.Chapter6providesmoredetailontheseTEPspecificprojectsalongwithanin‐depthanalysisbyLazard1onstoragetechnologiesthathighlightstoragecosts,end‐usesandtechnologycombinations.

EnergyEfficiencyImplementationPlan

TEP’s2016EnergyEfficiencyImplementationPlan,approvedinFebruary2016bytheArizonaCorporationCommission,includesnewprogramsandmeasuresthatcanhelpcustomerssavemoney,reduceimpactsontheenvironment,andlimitthelong‐termneedfornewenergyresources.

Thenewofferings,whichwillbecomeavailableinthecomingmonths,includeaprogramtohelpschoolsimprovetheirenergyefficiency.WhileschoolsmayparticipateinotherTEPEnergyEfficiencyprograms,thisnewprogramwillbedevelopedspecificallyfortheirneeds.Preferencewillbegiventoschoolsthathavenotrecentlyinstalledenergyefficiencymeasures.

Inaddition,TEPcustomerscannowreceiverebatesforthepurchaseofenergyefficientvariable‐speedpoolpumpsfromqualifiedpoolprofessionals.Variable‐speedpumpslastlongerthanregularpoolpumpsastheycanbeprogrammedtooperateathighspeedonlywhennecessary.Withpropercalibration,variable‐speedpumpscanreduceenergyuseby70percent.

AnothernewprogramwillprovideinstantdiscountsforresidentialcustomerswhopurchasecertainEnergyStar‐certifiedproductsfromparticipatingretailers,includingairconditionersandwashingmachines.

Newincentiveswillbeavailabletohomeownersandapartmentownerswhoimprovetheefficiencyoftheirexistingheating,ventilationandairconditioning,orHVAC,systemswith“advancedtune‐up”measures.“Tuningup”anexistingHVACsystemcancostsignificantlylessthanbuyinganewunit.HomeownerswhoarrangeforaTEP‐qualifiedHVACprofessionaltoperformathoroughHVACtune‐upwillreceiveadiscountthroughthenewprogramandwillbeeligibletopurchasesmartthermostatsatadiscount.

Since2011,TEPhashelpedcustomerssavemorethan812,000megawatt‐hours,enoughenergytopowernearly78,000homesforayear.ThesesavingshelpTEPworktowardthegoalsintheArizonaElectricEnergyEfficiencyStandards(“EEStandard”),whichcallsonutilitiestoachievecumulativeenergysavingsof22percentby2020.

1 Lazard is a preeminent financial advisory and asset management firm. More information can be found at https://www.lazard.com

Page 16: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐16

CompliancewiththeCleanPowerPlan

OnOctober23,2015,theEPApublishedafinalruleregulating,forthefirsttime,“CO2”emissionsfromexistingpowerplants.Ingeneral,thisfinalrule,referredtoasthe“CleanPowerPlan”(“CPP”),aimstoreduceCO2emissionsfromU.S.powerplantsby32%from2005levelsby2030.Morespecifically,theruleestablishesemissionguidelinesbasedonEPA’sdeterminationofthe“bestsystemofemissionreductions”,whichstatesandtribes(heretoreferredtoas“states”)mustusetosetstandardsapplicabletotheaffectedplantsintheirjurisdictions.

Arizonaisoneof27stateschallengingtheEPA’srulemakingauthorityandArizonahasfiledsuitagainsttheEPA.OnFebruary9,2016,theUnitedStatesSupremeCourtissuedastayoftheCPP2meaningthattherulehasnolegaleffectpendingtheresolutionofthestateandindustrychallengetotherule.ThatchallengeiscurrentlybeforetheU.S.CourtofAppealsfortheD.C.Circuit,whichwillhearoralargumentsonJune2,2016.Inalllikelihood,thismeansaD.C.Circuitdecisionwillnotbeissueduntilearlyfall,attheearliest.Givenallthat’satstake,eitherenbancreviewontheD.C.Circuitorapetitionforcertiorarilikelywillfollow.

TheCPPestablishesemissiongoalsfortwosubcategoriesofpowerplantsintheformofanemissionrate(lbs/MWh)thatdeclinesovertheperiodfrom2022to2030.Thosesubcategoriesare:

Fossilfiredsteamelectricgeneratingunits(“SteamEGUs”)‐includescoalplantsandoilandnaturalgas‐firedsteamboilers

Naturalgas‐firedcombined‐cycleplants(“NGCC”)Thenusingtheserates(“SubcategoryRates”)andtheproportionalgenerationfromsteamEGUsandNGCCplantsineachstate,theCPPderivesstatespecificgoals(“StateRates”).TheCPPalsoconvertstheseemissionrategoalstototalmass(i.e.shorttons)goalsforeachstate.EachstateisrequiredtodevelopaStatePlanthatwillregulatetheaffectedplantsintheirjurisdiction.TEPhasaffectedplantsinthreeseparatejurisdictions,Arizona,NewMexico,andtheNavajoNation,andtherefore,willbesubjecttothreeStatePlans.Table1belowshowstheapplicablerategoals.

Table1–CPPRateGoals

CO2Rate(lbs/MWh) 2022‐2024 2025‐2027 2028‐2029 2030+

SubcategorizedRate‐SteamEGUs 1,671 1,500 1,308 1,305SubcategorizedRate‐NGCC 877 817 784 771

StateRate‐Arizona 1,263 1,149 1,074 1,031StateRate‐NewMexico 1,435 1,297 1,203 1,146StateRate‐NavajoNation 1,671 1,500 1,380 1,305

TherearethreeprimaryformsoftheStatePlanavailabletostates(withsub‐options):

Rate Plantsarerequiredtomeetanemissionratestandard(lbs/MWh)equaltotheplant’semissionsdividedbythesumofitsgenerationandthegenerationfromqualifying

2http://www.supremecourt.gov/orders/courtorders/020916zr3_hf5m.pdf

Page 17: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐17

renewableenergyprojectsand/orverifiedenergyefficiencysavings.Arateplancouldbeadministeredthroughtheuseofemissionratecredits(“ERCs”),wheresourceswithemissionsabovethestandardgeneratenegativeERCswhentheyoperate,andsourceswithemissionsbelowthestandard(ornoemissions)generatepositiveERCs.Attheendofacomplianceperiod,eachaffectedplantmusthaveatleasta“zero”balanceofERCs.

Undertherateapproach,stateshavetheoptionofmeasuringcomplianceagainsttheStateRateortheSubcategoryRates.

Mass Plantsareallocated(orotherwiseacquire)allowances,thetotalofwhichequalsthestate’smassgoal,andeachplantmustsurrenderanallowanceforeachtonofCO2emittedduringacomplianceperiod.Ownersofplantsthatdonothavesufficientallowancescanreduceemissionsbycurtailingproduction,re‐dispatchingtoaloweremissionresource,orretiringtheplantandre‐distributingallowancestotheirremainingplants.

StateMeasures Insteadofregulatingpowerplantsdirectly,astatecouldimplementpoliciesthatwillhavetheeffectofreducingemissionsintheirstatesuchasbuildingcodes,renewableenergymandatesorenergyefficiencystandards.Complianceismeasuredbasedonemissionsfromtheaffectedplants.

NavajoNation

IntheproposedFederalPlanandModelRules3,EPAaskedforcommentsonwhetheritwas“necessaryorappropriate”toregulateEGUsontheNavajoNationundertheCPP.TEP’sparentcompany,UNSEnergyCorporation,submittedcommentsstatingthatitwasnotappropriateornecessarytoregulatetheEGUsontheNavajoNationbecauseEGUretirementsthathavealreadyoccurredorareplannedpriorto2022willachieveessentiallythesameemissionreductionsaswillbeachievedthroughimplementationoftheCPP.

IftheEPAdeterminesthatitisinappropriateorunnecessarytoregulateEGUsontheNavajoNation,thenTEPwillberelievedofanyCPPrequirementsfortheNavajoGeneratingStationandtheFourCornersPowerPlant.IfEPAelectstoproceedwithregulatingtheseEGUsundertheCPP,detailsofthatregulationwillbeprovidedinthefinalFederalPlan,whichisexpectedlaterin2016.

NewMexico

RatherthanbesubjecttoaFederalImplementationPlan,theStateofNewMexicointendstosubmitaStateImplementationPlan(“SIP”)aswell,believingthataNewMexicodevelopedSIPwillprovidetheflexibilityneededtominimizecostspassedontoitscitizens.Ithasinitiatedaseriesofoutreachmeetingsatdifferentlocationsthroughthestate.TEPattendedameetingonNovember13,2015forownersoftheaffectedplants.TheStateofNewMexicoistheearlystagesoftheirstateplanningprocessandintendstosubmitaninterimplaninSeptember2016,witharequestforatwo‐yearextension.However,thetimingofthissubmittalwillbedelayedinlightoftheU.S.SupremeCourtstayoftherule.

3FederalPlanRequirementsforGreenhouseGasEmissionsforElectricUtilityGeneratingUnitsConstructedonorBeforeJanuary8,2014;ModelTradingRules;AmendmentstoFrameRegulations;ProposedRule[80FR64966]datedOctober23,2015

Page 18: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐18

Arizona

TheStateofArizonahasbeenproactiveinplanningforCPPcompliance.FollowingsubmittalofcommentstoEPA’sproposedrule,andpriortotheEPAissuingthefinalrule,theArizonaDepartmentofEnvironmentalQuality(“ADEQ”)continuedworkingwithstakeholders,andthroughaseriesofmeetingsaccumulatedalistofPotentialComplianceStrategies4.Afterthefinalrulewasissued,ADEQcontinuedtomeetwithstakeholdersandoneofitsinitialstepswastodevelop10PrincipalsofanArizonaResponsetotheCleanPowerPlan5.DuringthisphaseofCPPplanningADEQformedaTechnicalWorkingGrouptoassistinevaluatingtechnicalaspectsoftheplan.

TheStateofArizonahaspreviouslystateditiscommittedtodevelopingaStatePlan.DuetothecomplexitiesinherentindevelopingaStatePlan,theStateofArizonaalsoindicatedthatitwouldfileaninterimplanpriortoSeptember6,2016,andrequestatwo‐yearextensionforfilingthefinalStatePlan.However,thistimingwillbedelayedinlightoftheU.S.SupremeCourtstayoftherule.

Inpreparingfortheinitialplansubmittal,ADEQorganizedtheoptionsfortheformofaStatePlanintosubsetsofRateorMass,andhasexpressedaninterestinfocusingonthemostlikelyoptions.

Chart1–ADEQRegulatoryFrameworkOptions6

4http://www.azdeq.gov/environ/air/phasetwo.html5http://www.azdeq.gov/environ/air/phasethree.html6Ibid,ADEQ“EPA’sFinalCleanPowerPlan:Overview,SteveBurr,AQD,SIPSection,September1,2015

Page 19: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐19

PACEGlobalArizonaCPPAnalysis

TohelpevaluatetherelativebenefitsofRateversusMassforArizona,theArizonautilitieshiredPACEGlobal(“PACE”)toconductamodelingassessmentoftherelativecompliancepositioncomparedtotheStateRateandMassgoalsbasedonabasecaseoutlook.Theresults7ofthatassessmentindicatethatArizonawouldlikelyfallshortoftheallowancesneededtocoveremissionsusingamassapproach.However,Arizonawasabletomeettherategoalsforthevastmajorityofthecomplianceperiodstudied.Aratebasedplan,ingeneral,betteraccommodatestheneedtomeetfutureloadgrowthwithexistingplants,andthesubcategoryrateapproachisgenerallyconsideredbetterforresourceportfolioswithahighpercentageofcoal‐firedgeneration.

Figure4–PACEGlobalArizonaCPPAnalysis

WhilethefinallegalstatusoftheCPPhasyettobedetermined,itisworthnotingthatTEP’songoingresourcediversificationplanisconsistentwiththegoalsoftheCPPincludingreducedrelianceoncoal,andgreateruseofnaturalgas,renewableenergy,andenergyefficiency.

7MoreinformationcanbefoundatADEQ’swebsitehttp://www.azdeq.gov/environ/air/phasethree.html#technical

Page 20: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐20

Energy Efficiency in the Clean Power Plan 

Inthefinalrule,EPAidentifiesavarietyofenergyefficiencymeasures,programs,andpoliciesthatcancounttowardcomplianceoftheCPP.Theseincludeutilityandnonutilityenergyefficiencyprograms,buildingenergycodes,combinedheatandpower,energysavingsperformancecontracting,stateapplianceandequipmentstandards,behavioralandindustrialprograms,andenergyefficiencyinwaterandwastewaterfacilities,amongothers.

EnergyEfficiencyunderMassBasedComplianceProgramsUnderamassbasedapproach,energyefficiencyinherentlycountstowardcomplianceandstatescanuseanunlimitedamounttohelpachievetheirstategoals.Energyefficiencyinherentlycountstowardcomplianceunderamassbasedapproachsinceitdisplacesactualfossilgenerationandtheassociatedemissionsunderamasscap,freeingupallowancesforsourcesusetowardstheirremainingeffectedEGUsortotrade.Thereisnolimitontheuseofenergyefficiencyprogramsandprojects,andenergyefficiencyactivitiesdonotneedtobeapprovedaspartofastateplan,therefore,Evaluation,MeasurementandVerification(EM&V)isgenerallynotrequiredformassbasedapproachesundertheCleanPowerPlan.

EnergyEfficiencyunderRateBasedComplianceProgramsUnderratebasedplans,quantifiedandverifiedmegawatthours(MWh)fromeligibleenergyefficiencymeasuresinaratebasedstatecanbeusedtogenerateERCsandadjusttheCO2emissionrateofanaffectedEGU,regardlessofwheretheemissionreductionsoccur.EnergyefficiencyunderateratebasedplanmustundergoEM&V.ThefinalCPPgivesstateswithratebasedplanstheabilitytodesigntheirprogramssothattheyarereadyforinterstatetradingofERCs,includingthoseissuedforenergyefficiency,withouttheneedforformalarrangementsbetweenindividualstates.ThesestateplansrecognizeERCsissuedbyanystatethatalsousesaspecifiedEPAapprovedorEPAadministeredtrackingsystem.

EnergyEfficiencyandtheCleanEnergyIncentiveProgram(“CEIP”)EPAhasalsoproposedanearlycreditoptionforstatescalledtheCEIP.TheCEIPawardsearlycreditforlow‐incomeenergyefficiencyprogramsandcertainrenewableenergyprojectsimplementedin2020and2021.Theprogramoffersatwo‐to‐onematchforstateenergyefficiencysavingsinordertoincenttheseeffortspriortothestartofthecomplianceperiod.Thefinalrulealsorequiresstatestoincorporatetheneedsoflow‐incomeandunderservedcommunitieswithintheircomplianceplans,andfullyengagethesecommunitiesalongwithotherstakeholdersduringtheplanningprocess.

TransmissionandDistributionEfficiencyMeasuresEPA’sfinalrulealsoallowstransmissionanddistribution(“T&D”)measuresthatimprovetheefficiencyoftheT&Dsystemtocounttowardsemissionreductionsandcomplianceoptions.ThisincludesT&Dmeasuresthatreducelinelosses8ofelectricityduringdeliveryfromageneratortoanend‐userandT&Dmeasuresthatreduceelectricityuseattheend‐user,suchasconservationvoltagereduction(CVR)9.

8 T&Dsystemlosses(or‘‘linelosses’’)aretypicallydefinedasthedifferencebetweenelectricitygenerationtothegridandelectricitysales.TheselossesarethefractionofelectricitylosttoresistancealongtheT&Dlines,whichvariesdependingonthespecificconductors,thecurrent,andthelengthofthelines.TheEnergyInformationAdministration(EIA)estimatesthatnationalelectricityT&Dlossesaverageabout6percentoftheelectricitythatistransmittedanddistributedintheU.S.eachyear. 9 Volt/VAroptimization(VVO)referstocoordinatedeffortsbyutilitiestomanageandimprovethedeliveryofpowerinordertoincreasetheefficiencyofelectricitydistribution.VVOisaccomplishedprimarilythroughtheimplementationofsmartgridtechnologiesthatimprovethereal‐timeresponsetothedemandforpower.TechnologiesforVVOincludeloadtapchangersandvoltageregulators,whichcanhelpmanagevoltagelevels,aswellascapacitorbanksthatachievereductionsintransmissionlineloss.

Page 21: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐21

PlanningfortheFutureofEnergyEfficiency

TEP'senergyefficiencyprogramswillcontinuetocomplywiththeArizonaEnergyEfficiencyStandardthattargetsacumulativeenergysavingsof22%by2020.Infutureplanningcycles,TEPplanstoexpanditsenergyefficiencyresourceportfoliotobecompliantreadyundertheprovisionsoftheCPP.TEPplanstopartnerwithstatesandlocalorganizationstoleverageEPA’sCEIPtoidentifyopportunitiestoimproveenergyefficiencyforlowandmoderateincomecustomerswhilesupportingprivatesectorandfoundationinitiatives.Inthe2017FinalIRP,TEPplanstohighlightthecompany'sstrategyonhowitplanstomakethistransition.ThistransitionfromthecurrentArizonaEnergyEfficiencystandardtocomplianceundertheCPPwillplayakeyroleinachievinglowcostenergyalternativesforTEP'scustomers.

Page 22: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐22

PowerGenerationandWaterImpactsofResourceDiversification

TheCPPachievesCO2emissionreductionsprimarilybyreplacinggenerationfromhigheremittingcoal‐firedresourceswithacorrespondingamountofgenerationfromloweremittingNGCCplantsandzero‐emissionrenewableresources10.Fortunately,wateruseamongthesepowergenerationtechnologiesisanalogoustotheirrespectiveCO2emissions.SeeChart2belowforaveragewaterconsumptionratesforvariouselectricitygenerationtechnologies.Basedonthesewaterconsumptionrates,implementationoftheCPPshouldresultinlowerwaterconsumptionforpowergenerationoverall.

Chart2–LifeCycleWaterUseforPowerGeneration11

However,unlikeCO2emissions,waterconsumptionhasamuchmorelocalizedenvironmentalimpact.Theavailabilityofwaterthatiswithdrawnfromsurfacewaters,asinthecaseoftheNavajoGeneratingStation(LakePowell),theFourCornersPowerPlant(MorganLakeandtheSanJuanRiver),andtheSanJuanGenerating(SanJuanRiver),ishighlydependentonprecipitationandsnowpack,aswellasotheruses.

10EnergyEfficiencyisalsoanimportanttoolforachievingtheCO2emissionreductionscalledforundertheCPP.11AdaptedfromMeldrumet.al.“Lifecyclewateruseforelectricitygeneration:areviewandharmonizationofliteratureestimates”,publishedMarch3,2013,http://iopscience.iop.org/article/10.1088/1748‐9326/8/1/015031

Page 23: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐23

Similarly,theavailabilityofwaterthatiswithdrawnfromgroundwateraquifers,asinthecaseofSpringerville,Sundt,GilaRiver,andLunapowerplants,isdependentontherechargetoandotherwithdrawalsfromtheaquifer,butisalsoafunctionofthehydrogeologicalcharacteristicsoftheaquiferitself.

Totheextentthatthe“replacement”powergenerationislocatedatorneartothecoal‐firedgenerationitisreplacing,wateravailabilitywillbecomelessofanissueunderCPPimplementation.However,ifthe“replacement”powergenerationislocatedelsewhere,thewateravailabilityinthatareamayneedtobeevaluated.

Thereisover6,000MWofexistingNGCCcapacitylocatedwestofPhoenix,Arizona(inproximitytothePaloVerdeNuclearGeneratingStation)thatislikelytoseeasignificantincreaseingenerationasaresultofCPPimplementation.Whilethesegeneratingfacilitiesareexpectedtohavetherequisitelegalrightstowithdrawtheamountofwaternecessarytomeetexpectedhigherdemandforelectricity,theriskassociatedwiththecumulativeimpactofhighergroundwaterwithdrawalonhydrogeologicalavailabilityshouldbeassessed.TEPplanstoincludeaqualitativeassessmentaspartofthe2017FinalIRP.

Page 24: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐24

Page 25: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐25

LOAD FORECAST IntheIRPprocess,itiscrucialtoestimatetheloadobligationsthatexistingandfutureresourceswillberequiredtomeetforbothshortandlongtermplanninghorizons.Asafirststepinthedevelopmentoftheresourceplan,alongtermloadforecastisproduced.ThischapterwillprovideanoverviewoftheanticipatedlongtermloadobligationsatTEP,adiscussionofthemethodologyanddatasourcesusedintheforecastingprocess,andasummaryofthetoolsusedtodealwiththeinherentuncertaintysurroundinganumberofkeyforecastinputs.

GeographicalLocationandCustomerBase

TEPcurrentlyprovideselectricitytomorethan400,000customersintheTucsonmetroarea(PimaCounty).PimaCountyhasexperiencedpositivegrowthoverthelastdecadeandisnowestimatedtohaveapopulationofapproximately1,000,000people.Tucsonisthesecond‐largestcityinArizonaandtheseatofPimaCounty.ItislocatedinthesoutheastpartofthestateontheSantaCruzRiver.Tucsonisagrowing,importantandpopularvacationdestination.Visitorsareattractedtoitssunny,warm,anddryclimate,makingtourismanimportantcomponentofthecity’seconomy.TEPprovideselectricservicetomajorindustriesinaerospaceanddefensesystemsandalsotolargeelectronic,biotechnology,opticsandmanufacturingcompaniesinTucson.Tucsonalsoservesasamajorcommercialanddistributioncenterforagriculturalandminingindustries.ThecityisalsohometotheUniversityofArizona,PimaCommunityCollegeandotherinstitutionsofhigherlearning.

CustomerGrowth

Inrecentyears,populationgrowthinPimaCountyandcustomergrowthatTEPhavesloweddramaticallyasaresultofthesevererecessionandsubsequenteconomicweakness.Whilecustomergrowthiscurrentlyreboundingfromitsrecessionarylows,itisnotexpectedtoreturntoitspre‐recessionlevel.Chart3outlinesthehistoricalandexpectedcustomergrowthintheresidentialrateclassfrom2000‐2030.AscustomergrowthisthelargestfactorbehindgrowthinTEP’sload,thecontinuingcustomergrowthwillnecessitateadditionalresourcestoservetheincreasedloadinthemediumterm.

Chapter2

Page 26: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐26

Chart3‐EstimatedTEPCustomerGrowth2000‐2030

RetailSalesbyRateClassIn2015,TEPexperiencedaretailpeakdemandofapproximately2,214MWwithapproximately9,026GWhofsales.Approximately68%of2015retailenergywasprovidedtotheresidentialandcommercialrateclassesandapproximately32%soldtotheindustrialandminingrateclasses.Chart4depictsadetailedbreakdownoftheestimated2016retailsalesbyrateclass.

Chart4–Estimated2016RetailSales%byRateClass

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

200,000

250,000

300,000

350,000

400,000

450,000

500,000

2000 2003 2006 2009 2012 2015 2018 2021 2024 2027 2030

Growth, %

Residen

tal Customers

Average Annual Residential Customers % Growth

Residential42.56%

Commercial25.22%

Industrial23.43%

Mining8.41%

Other0.39%

Page 27: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐27

Load Forecast Process 

Methodology

TheloadforecastpresentedinthisPIRPwasderivedusinga“bottomup”approach.Amonthlyenergyforecastwaspreparedforeachofthemajorrateclasses(residential,commercial,industrial,andmining).Asthefactorsimpactingusageineachoftherateclassesvarysignificantly,themethodologyusedtoproducetheindividualrateclassforecastsalsovaries.However,theindividualmethodologiesfallintotwobroadcategories:

1) Fortheresidentialandcommercialclasses,forecastsareproducedusingstatisticalmodels.Inputsmayincludefactorssuchashistoricalusage,weather(e.g.averagetemperatureanddewpoint),demographicforecasts(e.g.populationgrowth),andeconomicconditions(e.g.grosscountyproductanddisposableincome).

2) Fortheindustrialandminingclasses,forecastsareproducedforeachindividualcustomeronacasebycasebasis.Inputsincludehistoricalusagepatterns,informationfromthecustomersthemselves(e.g.timingandscopeofexpandedoperations),andinformationfromTEPstaffwhoworkcloselywiththeminingandindustrialcustomers.

Aftertheindividualmonthlyforecastsareproduced,theyareaggregated(alongwithanyremainingmiscellaneousconsumption)toproduceamonthlyenergyforecastforthecompany.

Afterthemonthlyenergyforecastforthecompanywasproduced,theanticipatedmonthlyenergyconsumptionwasusedasaninputforanotherstatisticalmodelusedtoestimatethepeakdemand.Thepeakdemandmodelisbasedonhistoricalrelationshipbetweenhourlyloadandweather,calendareffects,andsalesgrowth.Oncetheserelationshipsareestimated,morethan60yearsofhistoricalweatherscenariosaresimulatedtogenerateaprobabilisticpeakforecast.

Page 28: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐28

RetailEnergyForecast

AsillustratedinChart5,aftertheperiodofrelativelyrapidgrowthfrom2005to2008,TEPsweather‐normalizedretailenergysalesexperiencedagradualdecrease.Whileusepercustomerisexpectedtoremainweakoverthenear‐term,thelargestimpactonnear‐termsalesistheanticipatedcurtailmentofcopperminingoperationsrecentlyannouncedbyTEP’slargestretailcustomer.TEP’sforecastassumesthatcommoditypriceswilleventuallyrecoverandthatminingloadswillincreaseduetotheresumptionofexistingminingoperationsandtheanticipatedadditionoftheRosemontcoppermine.After2020,salesgrowthisdominatedbyresidentialandcommercialsalesbutatapacebelowthehistoricalaverage.

Chart5‐RetailEnergySales(WeatherNormalized)

RetailEnergyForecastbyRateClass

Theretailenergysalesforecastassumessignificantshort‐termchangesforthenextfewyearsfollowedbyslowsteadygrowthbeginningin2020.However,thegrowthratesvarysignificantlybyrateclass.TheenergysalestrendsforeachmajorrateclassaredetailedinChart6.

Chart6‐RetailEnergySalesbyRateClass

6,000

7,000

8,000

9,000

10,000

11,000

12,000

2005 2008 2011 2014 2017 2020 2023 2026 2029

Retail Sales, GWh

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

2005 2008 2011 2014 2017 2020 2023 2026 2029

TEP Retail, GWh

Residential Commercial Industrial Mining

2020 ‐ 2030 Long Term Growth Average Annual Rate of 0.7%  

History  Forecast 

Page 29: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐29

Afterexperiencingconsistentyear‐over‐yeargrowththroughoutthepast,bothresidentialandcommercialenergysalesfellorremainedflatfrom2008to2015.BothclassesareassumedintheRetailEnergySalesForecasttoincreasesteadilyafter2016.However,industrialenergysalesareexpectedtoincreasemuchmoreslowlythanthoseineithertheresidentialorcommercialclasses.Inaddition,miningsalesareassumedtosignificantlyfallinthecomingyearsduetotheknownminecurtailmentrelatedtolowcommodityprices,andthenreboundasthesepricesreturntomorehistoricalaverages.

PeakDemandForecast

AsshowninChart7below,afterdecliningfrom2007to2015,demandisexpectedtodropin2016.Thisislargelyattributedtotheminingclass.Afterward,TEP’sretailpeakdemandisexpectedtogrowovertime.

Chart7‐PlanPeakDemand

DataSourcesUsedinForecastingProcess

Asoutlinedabove,thedevelopmentoftheloadforecastisdependentonabroadrangeofinputs(demographic,economic,weather,etc.)andsources.Forinternalforecastingprocesses,TEPutilizesanumberofsourcesforthesedata:

IHSGlobalInsight

TheUniversityofArizonaForecastingProject

ArizonaDepartmentofCommerce

U.S.CensusBureau

NationalOceanicandAtmosphericAdministration (“NOAA”)

WeatherUndergroundForecastingService

2,000

2,050

2,100

2,150

2,200

2,250

2,300

2,350

2,400

2,450

2005 2008 2011 2014 2017 2020 2023 2026 2029

TEP Retail Peak Dem

and, M

W

2020 – 2030 Long Term Growth 

Average  0.47%  

Page 30: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐30

FirmWholesaleEnergyForecastInadditiontoretailsalesdirectlytocustomers,TEPiscurrentlyundercontracttoprovidewholesaleenergyanddemandtofiveelectricpowercustomers:

1) SaltRiverProject(“SRP”)throughMay2016

2) NavajoTribalUtilityAuthority(“NTUA”)throughDecember2021

3) TohonoO’odhamUtilityAuthority(“TOUA”)throughAugust2019

4) TricoElectricCooperative(“TRICO”)throughDecember2024

5) ShellthroughDecember2017

6) NavopacheElectricCooperative(“Navopache”)fromJanuary2017throughDecember2041

TEP’s100MWon‐peaksalescontractwithSaltRiverProjectexpiresinMayof2016.Inthefallof2015,TEPsignedanewwholesalesalesagreementwithNavopacheElectricCooperativetoprovidewholesaleenergybeginninginJanuary2017.TEP’sexpectedfirmwholesaleobligations,coincidenttopeakretaildemand,aredetailedTable2below.Itisimportanttonotethatcontractextensionshavenotbeenassumed.However,thereisapossibilitythatanyorallagreementscouldbeextended.Thiswouldrequirecurrentresourceplanstoberevisedtoaccountfortheadditionalenergysalesandpeaksummerloadrequirements.

Table2‐FirmWholesaleRequirements

Firm Wholesale, GWh  2016  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

SRP  205                                

NTUA  253   262   266   277   288   291                 

TOUA  26   26   26   17                       

TRICO  40   31   83   112   133   127   163   182   185        

Shell  355  234                   

Navopache     315   401   401   403   401   401   401   403   401   401  

Total Firm Wholesale Sales  879   868  776   807   824   819   564   583   588   401   401  

  Coincident Peak Demand, MW  2016  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

NTUA  51   53   53   53   53   53                 

TOUA  4   4   4   4                       

TRICO  50   50   85   85   85   85   85   85   85        

Shell  100  100                   

Navopache     44   44   44   44   44   44   44   44   44   44  

Total Firm Demand  205   251   186   186   182   182   129   129   129   44   44  

Page 31: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐31

SummaryofLoadForecast

AsummaryoftheRetailandFirmWholesaleLoadForecastinpresentedinTable3,includingreductionsinloadduetotheimpactofdistributedgenerationandenergyefficiency.

Table3‐TEPForecastSummary

Retail Sales, GWh  2016  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

Customer Count, 000  420  426  432  438  444  449  455  460  466  471  475 

Residential  3,608  3,638  3,679  3,727  3,767  3,817  3,869  3,921  3,969  4,012  4,043 

Commercial  2,138  2,158  2,185  2,221  2,258  2,295  2,334  2,366  2,401  2,438  2,464 

Industrial  1,986  1,980  1,995  1,993  1,993  1,988  1,988  1,987  1,988  1,983  2,003 

Mining  713  617  735  1,317  1,833  1,813  1,813  1,813  1,818  1,813  1,813 

Other  33  33  33  33  33  33  33  33  33  33  33 

Total Retail  8,477  8,425  8,627  9,290  9,883  9,946  10,036  10,120  10,209  10,279  10,356 

 

Residential Sales Growth %  ‐2.4%  0.8%  1.1%  1.3%  1.1%  1.3%  1.4%  1.3%  1.2%  1.1%  0.8% 

Commercial Sales Growth %  0.5%  0.9%  1.3%  1.7%  1.6%  1.7%  1.7%  1.4%  1.4%  1.5%  1.1% 

Industrial Sales Growth %  ‐3.5%  ‐0.3%  0.8%  ‐0.1%  0.0%  ‐0.2%  0.0%  0.0%  0.0%  ‐0.3%  1.0% 

Mining Sales Growth %  ‐35.9%  ‐13.4%  19.1%  79.2%  39.2%  ‐1.1%        0.3%  ‐0.3%    

Other Sales Growth %  0.6%                               

Total Retail Sales Growth %  ‐6.1%  ‐0.6%  2.4%  7.7%  6.4%  0.6%  0.9%  0.8%  0.9%  0.7%  0.8% 

                       

Firm Wholesale Sales, GWh  2016  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

SRP  205                                

NTUA  253   262   266   277   288   291                 

TOUA  26   26   26   17                       

TRICO  40   31   83   112   133   127   163   182   185        

Shell  355  234                   

Navopache     315   401   401   403   401   401   401   403   401   401  

Total Firm Wholesale  879   868  776   807   824   819   564   583   588   401   401  

 

Retail Peak Demand, MW  2016  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

Retail Demand  2,109  2,122  2,153  2,336  2,414  2,417  2,424  2,439  2,446  2,479  2,512 

Retail Demand Growth %  4.76%  0.62%  1.49%  8.47%  3.34%  0.14%  0.29%  0.64%  0.29%  1.34%  1.33% 

 

Firm Wholesale Peak Demand, MW  2016  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

NTUA  51   53   53   53   53   53                 

TOUA  4   4   4   4                       

TRICO  50   50   85   85   85   85   85   85   85        

Shell  100  100                   

Navopache     44   44   44   44   44   44   44   44   44   44  

Total Firm Demand  205   251   186   186   182   182   129   129   129   44   44  

 

Total Retail & Firm Peak Demand, MW  2,314  2,372  2,339  2,521  2,595  2,599  2,553  2,568  2,575  2,523  2,537 

Page 32: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐32

Page 33: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPowerCompany

Page‐33

TEP Loads and Resources 

AcriticalcomponenttotheIRPplanningprocessistheassessmentoffirmloadobligationscomparedtoautilitiesfirmresourcecapacity.AspartofTEP’slong‐termplanningprocess,theCompanytargetsa15%reservemargininordertocoveranysystemcontingenciesrelatedtounplannedoutagesonitsgenerationandtransmissionsystem.

Table4–FirmLoadObligations,SystemPeakDemand(MW)onPage34summarizesTEPgrossretailpeakdemandsbyyearbasedonitsJanuary2016loadforecastprojections.ThesedemandsarebrokendownbycustomerclassandtheCompany’sassumptionsoncoincidentpeakloadreductionsfromdistributedgenerationandenergyefficiency.Inaddition,TEPincludesasummaryofprojectedfirmwholesalecustomerdemandsalongwithdemandassociatedwithsystemlosses.Finally,Table4summarizestheCompany’sreservemarginpositionsbasedonthecapacityresourcesshowninTable5.

Table5onPage35summarizesTEP’sfirmresourcecapacitybaseditscurrentplanningassumptionsrelatedtoitscoalandnaturalgasresources.Table5alsoreflectsTEP’splantosource30%ofTEP’sretailloadsfromrenewablegenerationresourcesby2030.Additionalresourcessuchasdemandresponseprograms,short‐termmarketpurchasesalongwithcapacitysourcedfromitsproposedbatterystorageprojectarealsoshownintheTEPresourceportfolio.BasedonTEP’sassumptionsinthisMarch1,2016filing,theCompanyisshowing15%reservemarginforboth2016and2017.Beyond2017,TEPplanstofileitsReferenceCaseplaninApril2017thatwilldetailitsstrategytomeetbothitsshortandlong‐termresourcerequirementsoverthefifteenyearIRPplanninghorizon.Chart8onPage36showsavisualdepictionoftheCompany’sloadsandresourceassessment.

Chapter3

Page 34: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016Prelim

inaryIntegratedResourcePlan

Page‐34

Future Load

 Obligations 

Thetablesshownonthenexttw

opagesprovideadatasum

maryonTEP’sloadsandresources.Table4below

showsTEP’sprojectedfirmload

obligationswhichincludesretail,firmwholesale,systemlossesandplanningreserves.

Table4–FirmLoadObligations,SystemPeakDem

and(MW)

Dem

and, M

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

2027 

2028 

2029 

2030 

2031 

2032 

Residen

tial 

1,139 

1,101 

1,115 

1,212 

1,259 

1,269 

1,281 

1,296 

1,308 

1,332 

1,354 

1,377 

1,401 

1,425 

1,455 

1,473 

1,494 

Commercial 

508 

479 

475 

516 

536 

540 

545 

552 

557 

567 

576 

586 

596 

606 

619 

627 

636 

Industrial 

485 

444 

443 

482 

500 

504 

509 

515 

520 

529 

538 

547 

557 

566 

578 

586 

594 

Mining 

124 

292 

337 

366 

380 

383 

387 

392 

395 

402 

409 

416 

423 

430 

439 

445 

451 

Other 

28 

Gross Retail Peak Dem

and 

2,284 

2,321 

2,375 

2,581 

2,680 

2,703 

2,728 

2,760 

2,785 

2,836 

2,882 

2,933 

2,983 

3,034 

3,097 

3,137 

3,182 

    

    

    

    

    

    

    

    

    

Distributed Gen

eration 

‐32 

‐35 

‐39 

‐42 

‐45 

‐48 

‐51 

‐54 

‐56 

‐58 

‐59 

‐60 

‐62 

‐63 

‐65 

‐68 

‐69 

Energy Efficiency 

‐143 

‐163 

‐183 

‐202 

‐221 

‐237 

‐253 

‐268 

‐283 

‐299 

‐312 

‐327 

‐341 

‐356 

‐383 

‐394 

‐411 

Net Retail Peak Dem

and 

2,109 

2,122 

2,153 

2,336 

2,414 

2,417 

2,424 

2,439 

2,446 

2,479 

2,512 

2,546 

2,580 

2,615 

2,650 

2,676 

2,702 

    

    

    

    

    

    

    

    

    

Firm

 Wholesale Dem

and 

205 

251 

186 

186 

182 

182 

129 

129 

129 

44 

44 

44 

44 

44 

44 

System

 Losses 

209 

211 

214 

232 

240 

240 

241 

242 

243 

246 

249 

253 

256 

260 

263 

266 

268 

Total Firm Load

 Obligations 

2,524 

2,583 

2,552 

2,754 

2,835 

2,839 

2,794 

2,810 

2,818 

2,769 

2,806 

2,843 

2,880 

2,919 

2,957 

2,942 

2,970 

    

    

    

    

    

    

    

    

    

Reserve Margin 

432 

457 

74 

‐108 

‐159 

‐144 

‐243 

‐246 

‐227 

‐166 

‐169 

‐206 

‐211 

‐244 

‐250 

‐402 

‐541 

Reserve Margin, %

 15% 

15% 

3% 

‐4% 

‐6% 

‐5% 

‐10% 

‐10% 

‐9% 

‐6% 

‐6% 

‐8% 

‐8% 

‐9% 

‐9% 

‐16% 

‐22% 

Page 35: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPow

er

Page‐35

System Resource Cap

acity 

Table5showsTEP’sprelim

inaryfirmresourcecapacitybasedonaresource’scontributiontosystempeak.

Table5–CapacityResources,SystemPeakDem

and(MW)

Firm

 Resource Cap

acity  (MW) 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

2027 

2028 

2029 

2030 

2031 

2032 

 Four Corners  

110 

110 

110 

110 

110 

110 

110 

110 

110 

110 

110 

110 

110 

110 

110 

110 

  

 Navajo  

168 

168 

168 

168 

168 

168 

168 

168 

168 

168 

168 

168 

168 

168 

168 

    

 San

 Juan

  340 

340 

170 

170 

170 

170 

    

    

    

    

    

  

 Springerville  

598 

793 

793 

793 

793 

793 

793 

793 

793 

793 

793 

793 

793 

793 

793 

793 

793 

 Rem

ote Coal Resources  

1216 

1411 

1241 

1241 

1241 

1241 

1071 

1071 

1071 

1071 

1071 

1071 

1071 

1071 

1071 

903 

793 

Sundt 1‐4  

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

422 

Luna En

ergy Facility  

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

185 

Gila River Power Station 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

374 

DeM

oss Petrie CT  

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

75 

North Loop CT 1‐4  

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

95 

Sundt CT 1‐2  

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

49 

Total N

atural G

as Resources  

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

1200 

Utility Scale Ren

ewables  

97 

110 

136 

149 

176 

189 

215 

228 

255 

268 

301 

301 

334 

334 

367 

367 

367 

Dem

and Response 

19 

24 

29 

35 

40 

45 

45 

45 

45 

45 

45 

45 

45 

50 

50 

50 

50 

Total Ren

ewable & EE Resources  

116 

134 

165 

184 

216 

234 

260 

273 

300 

313 

346 

346 

379 

384 

417 

417 

417 

Short‐Term

 Market Resources 

425 

275 

Future Storage Resources 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

Total Firm Resources 

2956 

3040 

2626 

2645 

2677 

2695 

2551 

2564 

2591 

2604 

2637 

2637 

2670 

2675 

2708 

2540 

2430 

 

Page 36: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016Prelim

inaryIntegratedResourcePlan

Page‐36

Prelim

inary Load

s an

d Resource Assessm

ent 

Chart8–TEP’s2016PreliminaryLoadsandResourceAssessm

ent

Page 37: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐37

Community Scale Renewables and Distributed Generation 

RenewableOverview

Overthelastseveralyears,TEPhasconstructedorenteredintopowerpurchasedagreements(“PPAs”)forsolarandwindresourcestoproviderenewableenergyforitsserviceterritory.ThisispartofTEP’scommitmenttomeetingtheArizonaAnnualRenewableEnergyRequirementof15%by2025assetforthinA.A.C.R14‐2‐1804(the“AnnualRenewableEnergyRequirement”).Table6belowlistsTEP’sexistingandplannedrenewableresources.

Table6–TEP’sExistingRenewableResources

Resource‐ Counterparty  Owned/PPA  Location Operator‐   

Manufacturer 

Completion/Estimated 

Date Capacity MW 

Fixed Photovoltaic

Springerville  Owned  Springerville, AZ Various Dec‐2010  6.4

Solon UASTP III  Owned  Tucson, AZ Solon Jan‐2012  5

Gato Montes  PPA  Tucson, AZ Astrosol Jun‐2012  6

Solon Prairie Fire  Owned  Tucson, AZ Solon Oct‐2012  5

TEP Warehouse  Owned  Marana, AZ Various 2012  0.5

Ft Huachuca I  Owned  Sierra Vista, AZ Solon Dec‐2014  17.2

Ft Huachuca II  Owned  Sierra Vista, AZ Solon Q3 2016  5

Community Solar  Owned  Tucson, AZ TBD Q4 2016  5

Single‐Axis Tracking Photovoltaic

Solon UASTP I  Owned  Tucson, AZ Solon Dec‐2010  1.6

E.On UASTP  Owned  Tucson, AZ Suntech Dec‐2010  6.6

FRV Picture Rocks  PPA  Tucson, AZ MEMC Oct‐2012  25

NRG Solar Avra Valley  PPA  Tucson, AZ First Solar Oct‐2012  35

E.On/TEP Valencia  PPA  Tucson, AZ Areva Jul‐2013  13.2

Avalon Solar I  PPA  Sahuarita, AZ Avalon Dec‐2014  35

Red Horse Solar  PPA  Willcox, AZ Torch  Sep‐2015  51.25

Avalon Solar II  PPA  Sahuarita, AZ Avalon Feb‐2016  21.53

Concentrated Photovoltaic

Amonix UASTP II  PPA  Tucson, AZ Amonix Apr‐2011  2

Cogenera  PPA  Tucson, AZ Cogenera Jul‐2014  1.38

Areva Solar  Owned  Tucson, AZ Areva Dec‐2014  5

Wind

Macho Springs  PPA  Deming, NM Element Power Nov‐2011  50.4

Red Horse Wind  PPA  Willcox, AZ Torch  Sep‐2015  30

CommunityScaleRenewables

TEP’scurrentrenewableacquisitionstrategyfocusesondevelopinganumberofsmalltomid‐scalerenewableprojectsdiversifiedacrossawide‐rangeoftechnologies,projectsandcounterparties.ThetableaboveliststheexistingandcontractedrenewableenergyprojectsinTEP’sresourcemix.Inthe2014IRP,TEPhadacombinedtotalofapproximately157MWofrenewableprojectsinserviceasoftheApril1,2014filing.Sincethen,TEPhasaddedanadditional161MWofrenewableprojectsandplanstohaveapproximately328MWofrenewableprojectsonlinebytheendof201612.TEPiscurrentlyover‐compliantontheRESandexpectstocontinuetomeetorexceedthestandard.The2017FinalIRPtobefiledinAprilof2017willdetailTEP’sexpandedcommitmenttorenewableenergy.

12 Project totals represent AC capacities of owned and contracted renewable resources.

Page 38: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐38

LocationsofUNSRenewablesProjects

Figure5–UNSRenewableProjects

DistributedGeneration

Bytheendof2015,TEPhadapproximately86MWofrooftopsolarPVandsolarhotwaterheatingcapacity.Distributedgenerationisexpectedtosupplyatleast159GWhofenergyin2016.OnlyasmallportionofthisgenerationisattributabletoTEP’srooftopsolarplanthatwasinitiatedin2015.

Page 39: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPow

er

Page‐39

OverviewoftheUNSRenew

ablePortfolio

Page 40: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐40

Energy Efficiency  

Overview

ThissectionisanoverviewoftheDemand‐SideManagement(“DSM”)programsthattargettheresidential,commercialandindustrial(“C&I”)sectors,aswellastheirassociatedproposedimplementationcosts,savings,andcost‐benefitresults.

TEPrecognizesthatenergyefficiencycanbeacost‐effectivewaytoreduceourrelianceonfossilfuels.TEPoffersavarietyofenergysavingoptionsforcustomers,fromsimpleconsultationtoincentivesthatencouragebothhomeownersandbusinessestoinvestinefficientheatingandcoolingandotherenergyefficiencyupgrades.

TEP,withinputfromotherpartiessuchasNavigantConsulting,Inc.(“Navigant”)andtheSouthwestEnergyEfficiencyProject(“SWEEP”),hasdesignedacomprehensiveportfolioofprogramstodeliverelectricenergyanddemandsavingstomeettheannualDSMenergysavingsgoalsoutlinedintheStandard.Theseprogramsincludeincentives,direct‐installandbuy‐downapproachesforenergyefficientproductsandservices;educationalandmarketingapproachestoraiseawarenessandmodifybehaviors;andpartnershipswithtradealliestoapplyasmuchleverageaspossibletoaugmentthereturnofrate‐payerdollarsinvested.

ThroughTEP’sDSMprogramsTEPcontinuestomakegreatstridestowardmeetingtheaggressivegoalsintheStandard.TheStandardcallsoninvestor‐ownedelectricutilitiesinArizonatoincreasethekilowatt‐hoursavingsrealizedthroughcustomerratepayer‐fundedenergyefficiencyprogramseachyearuntilthecumulativereductioninenergyachievedthroughtheseprogramsreaches22percentby2020.

CurrentImplementationPlan,Goals,andObjectives

TEP’shigh‐levelenergyefficiency‐relatedgoalsandobjectivesareasfollows:

Implementcost‐effectiveenergyefficiencyprograms.

Designandimplementadiversegroupofprogramsthatprovideopportunitiesforparticipationforallcustomers.

Whenfeasible,maximizeopportunitiesforprogramcoordinationwithotherefficiencyprograms(e.g.,SouthwestGasCorporation,ArizonaPublicServiceCorporation)toyieldmaximumbenefits.

Maximizeprogramenergysavingsataminimumcostbystrivingtoachievecomprehensivecost‐effectivesavingsopportunities.

ProvideTEPcustomersandcontractorswithwebaccesstodetailedinformationonallefficiencyprograms(residentialandcommercial)forelectricitysavingsopportunitiesatwww.tep.com.

Expandtheenergyefficiencyinfrastructureinthestatebyincreasingthenumberofavailablequalifiedcontractorsthroughtrainingandcertificationinspecificfields.

Usetrainedandqualifiedtradealliessuchaselectricians,HVACcontractors,builders,architectsandengineerstotransformthemarketforefficienttechnologies.

Educatecustomerstomodifybehaviormodificationsthatenablethemtouseenergymoreefficiently.

Page 41: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐41

ProgramPortfolioOverviewAsillustratedinTable7,TEP’sportfolioofprogramscanbedividedintoresidential,behavioral,C&I,support,andutilityimprovementsectors,withadministrativefunctionsprovidingsupportacrossallprogramareas.WiththeCommission’sapprovalofTEP’s2016EEPlan,TEPhasaddednewprogramsandmeasureswithinexistingprogramsincludingenergystarappliances,smartthermostats,homeenergyreports,schools(pilotprogram),HVAC,andlightingmeasures.

Table7‐TEPPortfolioofPrograms

Residential Sector 

Appliance Recycling 

Energy Star Appliances 

Existing Homes 

Home Energy Reports 

Low Income Weatherization 

Multi‐Family Homes 

New Construction 

Shade Trees 

Behavioral Sector Community Education 

K‐12 Energy Education 

Commercial & Industrial 

Sector 

C&I Comprehensive 

Small Business Direct Install/Schools 

Commercial New Construction 

Bid for Efficiency 

Retro‐Commissioning 

Combined Heat & Power 

Support Sector Consumer Education and Outreach 

Energy Codes and Standards Enhancement 

Utility Improvement Sector 

Conservation Voltage Reduction 

Generation Improvement and Facilities Upgrade 

C&I Direct Load Control 

Page 42: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐42

Transmission 

Overview

TransmissionresourcesareakeyelementinTEP’sresourceportfolio.AdequatetransmissioncapacitymustexisttomeetTEP’sexistingandfutureloadobligations.TEP’sresourceplanningandtransmissionplanninggroupscoordinatetheirplanningeffortstoensureconsistencyindevelopmentofitslong‐termplanningstrategy.Onastatewidebasis,TEPparticipatesintheACC’sBiennialTransmissionAssessment(“BTA”)whichproducesawrittendecisionbytheACCregardingtheadequacyoftheexistingandplannedtransmissionfacilitiesinArizonatomeetthepresentandfutureenergyneedsofArizonainareliablemanner.

TEPactivelyparticipatesintheregionaltransmissionplanningandcostallocationprocessofWestConnectasanenrolledmemberoftheTransmissionOwnerswithLoadServiceObligations(“TOLSO”)sectorincompliancewithFERCOrderNo.1000(“FERCOrder1000”).ThisfinalrulereformsFERC’selectrictransmissionplanningandcostallocationrequirementsforpublicutilitytransmissionproviders.WestConnectiscomposedofutilitycompaniesprovidingtransmissionofelectricityinthewesternUnitedStatesworkingcollaborativelytoassessstakeholderandmarketneedsanddevelopcost‐effectiveenhancementstothewesternwholesaleelectricitymarket.

Figure6‐FERCOrder1000TransmissionPlanningRegions

Page 43: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐43

SinceFERCOrder1000,WestConnectwentthroughitsfirstone‐yearregionalplanningandcostallocationprocessuponcompletionandapprovalofthe2015RegionalTransmissionPlaninDecember2015.Noprojectsubmittals,andthereforenocostallocationwasrequiredsincenoregionaltransmissionneedswereidentifiedinthisabbreviated2015cycle.

PreparationforthefirstWestConnectbiennialregionaltransmissionplanningandcostallocationprocesscoveringtheperiodJanuary1,2016throughDecember31,2017beganinthelastquarterof2015.Preparationincludedinitiationofthe2016‐17RegionalStudyPlanprocessandscenariostobeevaluatedforinclusioninthestudyplanweresubmittedpriortoDecember31,2015.WestConnectconductsanassessmentoftransmissionplanningmodelsincorporatingthesescenariostoidentifytheneedfornewtransmission.Thekeydeliverableisaregionaltransmissionplanthatselectsregionaltransmissionprojectstomeetidentifiedreliability,economic,publicpolicy,orcombinationthereof,transmissionneeds.

ToassistwithArizona’sCPPstateplanningefforts,TEPparticipatedwithAPS,SRP,SouthwestTransmissionCooperativeandUNSElectriconascenariobasedonmodelingofaCPPcomplianceplan,andpreparedandsubmittedajointArizonaUtilityGroup(“AUG”)studyrequesttoWestConnecttobeincludedinthe2016‐17RegionalPlanningProcess.WorkingthroughtheregionalplanningprocessisthemostefficientmethodofachievingacredibleoutcomebecauseitisaccomplishedincoordinationwiththeotherthreewesternPlanningRegions(CaliforniaIndependentSystemOperator(“CAISO”),ColumbiaGridandNorthernTierTransmissionGroup)andthereforeincoordinationwithotherstates.AkeyobjectiveistohaveaccesstotheWestConnectpowerflowbasecasetoperformamorecrediblereliabilityanalysisontheArizonatransmissionsystemassessingtheimpactoftheCPPandmeetingBTAplanningrequirements.

PinalCentraltoTortolita500kVTransmissionUpgrade

InNovember2015,TEPenergizedits500kVtransmissionexpansionprojectbetweenPinalCentralSubstationandTortolitaSubstation.ThePinalCentraltoTortolitalinewillhelpmeetTucson’sfutureenergydemandsbyaddingasecondextrahighvoltage(“EHV”)transmissionconnectionbetweenTucsonandthePaloVerdewholesalepowermarket.ThislinetiesintheexistingSaltRiverProjectSoutheastValleytransmissionproject(TEPisaparticipant)fromPinalCentralintoTortolita.ThisnewtransmissioninterconnectionwillfurtherimproveTEP’saccesstoawiderangeofrenewableandwholesalemarketresourceslocatedinthePaloVerdeareawhileimprovingTEP’ssystemreliability.

Map1‐PinalCentral‐Tortolita500kVProject

Page 44: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐44

Page 45: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐45

EMERGING TECHNOLOGIES 

Small Modular Nuclear Reactors 

Smallmodularnuclearreactors(“SMR”),approximatelyone‐thirdthesizeofcurrentnuclearplants,are

compactinsize(300MWorless)andareexpectedtooffermanybenefitsindesign,scale,andconstruction

(relativetothecurrentfleetofnuclearplants)aswellaseconomicbenefits.Asthenameimplies,being

modularallowsforfactoryconstructionandfreighttransportationtoadesignatedsite.Thesizeofthefacility

canbescaledbythenumberofmodulesinstalled.Capitalcostsandconstructiontimesarereducedbecausethe

modulesareself‐containedandreadytobe“dropped‐in”toplace.

AWorldNuclearAssociation2015reportonSMRstandardizationoflicensingandharmonizationofregulatory

requirements,saidthattheenormouspotentialofSMRsrestsonanumberoffactors:

Becauseoftheirsmallsizeandmodularity,SMRscouldalmost becompletelybuiltinacontrolledfactorysettingandinstalledmodulebymodule,improvingthelevelofconstructionqualityandefficiency.

Theirsmallsizeandpassivesafetyfeaturesmakethemfavorabletocountrieswithsmallergridsandlessexperiencewithnuclearpower.

Size,constructionefficiencyandpassivesafetysystems(requiringlessredundancy)canleadtoeasierfinancingcomparedtothatforlargerplants.

Moreover,achieving‘economiesofseriesproduction’foraspecificSMRdesignwillreducecostsfurther.

TheWorldNuclearAssociationliststhefeaturesofanSMR,including:

Smallpower,compactarchitectureandusuallyemploymentofpassiveconcepts(atleastfornuclearsteamsupplysystemandassociatedsafetysystems).Therefore,thereislessrelianceonactivesafetysystemsandadditionalpumps,aswellasACpowerforaccidentmitigation.

Thecompactarchitectureenablesmodularityoffabrication(in‐factory),whichcanalsofacilitateimplementationofhigherqualitystandards.

Lowerpowerleadingtoreductionofthesourcetermaswellassmallerradioactiveinventoryinareactor(smallerreactors).

Potentialforsub‐grade(undergroundorunderwater)locationofthereactorunitprovidingmoreprotectionfromnatural(e.g.seismicortsunamiaccordingtothelocation)orman‐made(e.g.aircraftimpact)hazards.

Themodulardesignandsmallsizelendsitselftohavingmultipleunitsonthesamesite.

EmergingTechnologyChapter4

Page 46: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐46

Lowerrequirementforaccesstocoolingwater–thereforesuitableforremoteregionsandforspecificapplicationssuchasminingordesalination.

Abilitytoremovereactormoduleorin‐situdecommissioningattheendofthelifetime

TheWorldNuclearAssociationwebsitehasdetailedinformationrelatedtoSMRs.Thewebsiteislocatedat:http://www.world‐nuclear.org/info/nuclear‐fuel‐cycle/power‐reactors/small‐nuclear‐power‐reactors/

NuScalePowerTMisdeveloping50MWemodulesthatcanbescaledupto600MWe(12modules).ThescalabilityofSMRsallowsforsmallutilitieslikeTEPtoconsidertheirviabilitywhilelesseningthefinancialrisk.InDecemberof2013,NuScalewasawardedagrantbytheDepartmentofEnergy(“DOE”)thatwouldcoverhalf(upto$217million)tosupportdevelopmentandreceivecertificationandlicensingfromtheNuclearRegulatoryCommission(“NRC”)onasinglemodule.

Inthefallof2014,NuScalesignedteamingagreementswithkeyutilitiesintheWesternregion,whichincludeEnergyNorthwestinWashingtonStateandtheUtahAssociationofMunicipalPowerSystems(“UAMPS”),representingmunicipalpowersystemsinUtah,Idaho,NewMexico,Arizona,Washington,Oregon,andCalifornia.Thisinitialproject,knownastheUAMPSCarbonFreePowerProject,wouldbesitedineasternIdahoandisbeingdevelopedwithpartnersUAMPS,whichwillbetheplantowner,andEnergyNorthwest,whichwillbetheoperator.Theteamexpectsthatthe12‐moduleSMRwillbeoperationin2024.

 NuScaleCross‐sectionofTypicalNuScaleReactorBuilding

50MWeNuScalePowerModule

Page 47: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐47

Reciprocating Internal Combustion Engines 

ReciprocatingInternalCombustionEngines(“RICE”)aresimplycombustionenginesthatareusedin

automobiles,trucks,railroadlocomotives,constructionequipment,marinepropulsion,andbackuppower

applications.Moderncombustionenginesusedforelectricpowergenerationareinternalcombustionengines

inwhichanair‐fuelmixtureiscompressedbyapistonandignitedwithinacylinder.RICEarecharacterizedby

thetypeofcombustion:spark‐ignited,likeinatypicalgaspoweredvehicleorcompression‐ignited,alsoknown

asdieselengines.

Figure7–Wartsila‐50DF

Anemergingandpotentiallybeneficialuseoftheseenginesisinlarge‐scaleelectricutilitygeneration.The

combustionengineisnotanewtechnologybutemergingadvancesinefficiencyandtheneedforfast‐response

generationmakeitaviableoptiontostabilizevariableandintermittentelectricdemandandresources.RICE

hasdemonstratedanumberofbenefits;

FastStartTimes–Theunitsarecapableofbeingon‐lineatfullloadwithin5minutes.Thefastresponseisidealforcyclingoperation.RICEcanbeusedto‘smooth’outintermittentresourceproductionandvariability.

RunTime‐Theunitsoperateoverawiderangeofloadswithoutcompromisingefficiency,andcanbemaintainedshortlyaftershutdown.Aftershutdown,theunitmustbedownfor5minutes,ataminimumtoallowforgaspurging.

ReducedO&M–CyclingtheunithasnoimpactonthewearofRICE.Theunitisimpactedbyhoursofoperationandnotbystartsandcyclingoperationsasisthecasewithcombustionturbines.

FastRamping–Atstart,theunitcanramptofullloadin2minutesonahotstartandin4minutesonawarmstart.Oncetheunitisoperational,itcanrampbetween30%and100%loadin40seconds.Thisrampingiscomparabletotheratethatmanyhydrofacilitiescanrampat.

MinimalAmbientPerformanceDegradation–ComparedtoAeroderivativeandFrametypecombustionturbines,RICEoutputandefficiencyisnotasdrasticallyimpactedbytemperature.ThesitealtitudedoesnotsignificantlyimpactoutputonRICEbelow5,000feet.

Page 48: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐48

GasPressure–RICEcanrunonlowpressuregas,aslowas85PSI.MostCT’srequireacompressorforpressureat350PSI.

ReducedEquivalentForcedOutageRate(“EFOR”)–EachRICEhasanEFORoflessthan1%.AfacilitywithmultipleRICEwillhaveacombinedEFORthatisexponentiallylessbyafactorofthenumberofunitsatthefacility.

LowWaterConsumption–RICEuseaclosed‐loopcoolingsystemthatrequiresminimumwater.

Modularity–EachRICEunitisbuiltatapproximately2to20MWsandisshippedtothesite.

AnintriguingapplicationforRICEisitspotentialforregulatingthevariabilityandintermittencyof

renewableresources.InthefinalIRP,TEPwillexplorethepossibilityofnaturalgaspoweredRICEinits

proposedscenarios.

Figure8–ReciprocatingInternalCombustionEngineFacility

Page 49: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐49

DELIVERY TECHNOLOGY  

TheFutureoftheDistributionGrid

Changesinthesupply,demand,anddeliveryofelectricityareremodelingelectricdistributionsystemsatmostNorthAmericanutilities.DistributedEnergyResources(“DERs”)areleadingmanyofthesechanges.Bycreatingenergysupplyinnew,small,intermittent,anddistributedlocationsacrossthegrid,DERshaverequirednewlevelsofsystemflexibility.DERshavealsocreatednewopportunitiesforelectricutilitiestoimproveperformance,tolowercosts,andtoimprovecustomersatisfaction.

ToaccommodateDERsandotherinnovations,electricutilitiesneedtodomorethanmaketheirdistributionsystemsbigger.Instead,utilitiesneedtomaketheirdistributionsystemssmarter.Smartdistributionsystemsprovideflexibility,capability,speedandresilience.Toachievenewlevelsofperformance,thesesmartdistributionsystemsincludenewtypesofsoftware,networks,sensors,devices,equipment,andresources.Toachievenewlevelsofeconomicvalue,thesesmartdistributionsystemsoperateaccordingtonewstrategiesandmetrics.WithmoredistributedgenerationresourcesbeingdeployedonTEP’sdistributionsystem,higherdemandsandlowerenergyconsumptionisoccurringtoday.Thisputsdemandsonthetransmissionanddistributionsystemsthatwerenotcontemplatedintheoriginaldesignsandrequirementsofthesystem.Tomeetthesenewdemands,newmethodsandtechnologyneedstobedevelopedandimplemented.TEPisinvestigatingtechnologytoaddmoresensingandmeasurementdevicesandnewmethodsformanagingandoperatingthedistributionsystem.Thisapproachturnsadistributionfeederintoaneffectivemicrogridsystem.

Figure9–SmartGridSystems

Page 50: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐50

Withincreaseddemandandlowerenergyconsumption,newtechniquesandstrategiesneedtobedevelopedandimplementedtoeffectivelymanagecosts.Byaddingadditionalmeasurementandsensingcapabilitiesthesituationalawarenessofthedistributionsystemwillbeincreased.Thesituationalawarenessallowsforrealtimeoperationsandplanningopportunitiesforefficiencyandproductivitychanges.Toutilizetheexistingdistributionsystemmoreefficiently,TEPisinvestigatingtheuseofDERs,energystorage,energyefficiency,andtargeteddemandresponsecapabilitiesinconjunctionwithoptimizationsoftwaretoreducetheinfrastructureadditionsrequiredduetohighercustomerdemand.Thisstrategyismuchdifferentthanhowthedistributionsystemhasbeenmanagedinthepast.WearenowusingabottomupplanninganddesignprocessthatneedstobeintegratedwiththeIRPprocess.Newtoolsandcapabilitieswillberequiredasaresultofthenewopportunitiesandcapabilitiesenvisioned.

Atthecoreofthesechangesistheneedforacommunicationsnetworkthatallowsforintelligentelectronicdevicestobeinstalledonthedistributionsystem.Thecommunicationsnetworkallowsforthebackhaulofinformationfromtheintelligentelectronicdevicestocentralizedsoftwareandcontrolapplications.Simplycollectinganddisplayingmoresensingandmeasurementinformationwon’tprovidetheneededbenefits.Anintegratedapproachtotheinstallationoffielddevices,softwareapplicationsandhistoricaldatamanagementwillbeneeded.Adistributionmanagementsystem(“DMS”)isthecentralsoftwareapplicationthatprovidesdistributionsupervisorycontrolanddataacquisition(“SCADA”),outagemanagementandgeographicalinformationintoasingleoperationsview.Bycombiningtheinformationfromallthreeofthesesystemsintoasingleviewanelectricaldistributionsystemmodelcanbecreatedforbothrealtimeapplicationsandplanningneeds.Thesingleviewprovidessituationalawarenessofthedistributionsystemthathasnotbeenpossibleinthepast.Italsocreatesaplatformfromwhichadditionalapplicationscanbelaunchedtocontinuetoprovidevalueandnewopportunities.Thehistoricalinformationalsocreatesanewopportunitytodrivevalueanddecisionsbasedonsystemperformanceanddynamicsimulations.

WiththedevelopmentofmultipledistributionmicrogridfeedersandDERsystems,thechallengeofresourcedispatchingwilldevelop.Asolutiontodispatchacrossafleetofresourcesofexistingcentralizedgeneration,purchasedpowerfromthemarketandtheintermittencyofDERsystemstocustomerdemandwillberequired.Thespeedinwhichtheresourcepoolwillneedtochangeandoptimizeforefficiencyandcostwillrequirethesystemtobeautomated.Thedistributionmicrogridfeederconceptisintendedtohelpmanagethedistributionlevelintermittencybutwouldneedtobemonitoredandmanagedbytheautomatedsystemforresourcemanagement.Tomanagesuchalargeanddynamicsystemasoutlinedisasubstantialchallenge.Thistypeofautomatedsystemisnotcurrentlyavailablewithintheutilityindustry.

   

Page 51: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐51

Energy Storage  

Theelectricindustryhasalwayshadaninterestinthepossibilityofstoringenergy.Utilitieshavealwaysstrivedtomaintainasafe,reliableandcosteffectiveelectricgrid.Newchallenges,suchastheemergenceofrenewablegenerationhasgeneratedagreaterinterestinelectricenergystorage.ThetopicofEnergyStorageSystems(“ESS”)coversmanydifferenttypesoftechnology.Eachtechnologyhasspecificattributesandapplicationthatleadtousingthembasedonindividualsystemrequirementsforanidentifiedneed.Theenergystoragetechnologiesaremadeupofsystemssuchaspumpedhydro,compressedairenergystorage,varioustypesofbatteries,andflywheels.

PumpedHydro‐Power‐Thistechnologyhasbeeninusefornearlyacenturyworldwide.PumpedhydroaccountsformostoftheinstalledstoragecapacityintheUnitedStates.Pumpedhydroplantsuselowercostoff‐peakelectricitytopumpwaterfromalow‐elevationreservoirtoahigherreservoir.Whentheutilityneedstheelectricityorwhenpowerpricesarehigher,theplantreleasesthewatertoflowthroughhydroturbinestogeneratepower.

Typicalpumpedhydrofacilitiescanstoreupto10ormorehoursofwaterforenergystorage.Pumpedhydroplantscanabsorbexcesselectricityproducedduringoff‐peakhours,providefrequencyregulation,andhelpsmooththefluctuatingoutputfromothersources.Pumpedhydrorequiressiteswithsuitabletopographywherereservoirscanbesituatedatdifferentelevationsandwheresufficientwaterisavailable.Pumpedhydroiseconomicalonlyonalarge(250‐2,000MW)scale,andconstructioncantakeseveralyearstocomplete.

Theround‐tripefficiencyofthesesystemsusuallyexceeds70percent.Installationcostsofthesesystemstendtobehighduetositingrequirementsandobtainingenvironmentalandconstructionpermitspresentsadditionalchallenges.Pumpedhydroisaproventechnologywithhighpeakusecoincidence.ForTEP,itisalessviableoptionduetolimitedavailablesitesandwaterresources.

CompressedAirEnergyStorage(“CAES”)–Aleadingalternativeforbulkstorageiscompressedairenergystorage.CAESisahybridgeneration/storagetechnologyinwhichelectricityisusedtoinjectairathighpressureintoundergroundgeologicformations.CAEScanpotentiallyoffershorterconstructiontimes,greatersitingflexibility,lowercapitalcosts,andlowercostperhourofstoragethanpumpedhydro.ACAESplantuseselectricitytocompressairintoareservoirlocatedeitheraboveorbelowground.Thecompressedairiswithdrawn,heatedviacombustion,andrunthroughanexpansionturbinetodriveagenerator.Thedispatchtypicallywilloccurathighpowerpricesbutalsowhentheutilityneedstheelectricity,

CAESplantsareinoperationtoday—a110‐MWplantinAlabamaanda290‐MWunitinGermany.Bothplantscompressairintoundergroundcavernsexcavatedfromsaltformations.TheAlabamafacilitystoresenoughcompressedairtogeneratepowerfor26hoursandhasoperatedreliablysince1991.

CAESplantscanuseseveraltypesofair‐storagereservoirs.Inadditiontosaltcaverns,undergroundstorageoptionsincludedepletednaturalgasfieldsorothertypesofporousrockformations.EPRIstudiesshowthatmorethanhalftheUnitedStateshasgeologypotentiallysuitableforCAESplantconstruction.Compressedaircanalsobestoredinabove‐groundpressurevesselsorpipelines.Thelattercouldbelocatedwithinright‐of‐waysalongtransmissionlines.Respondingrapidlytoloadfluctuations,CAESplantscanperformrampingdutytosmooththeintermittentoutputofrenewablegenerationsourcesaswellasprovidespinningreserveandfrequencyregulationtoimproveoverallgridoperations.

Batteries–Severaldifferenttypesoflarge‐scalerechargeablebatteriescanbeusedforESSincludingleadacid,lithiumion,sodiumsulfur(NaS),andredoxflowbatteries.Batteriescanbelocatedindistributionsystems

Page 52: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐52

closertoenduserstoprovidepeakmanagementsolutions.Anaggregationoflargenumbersofdispersedbatterysystemsinsmart‐griddesignscouldevenachievenearbulk‐storagescales.

Inaddition,ifplug‐inhybridelectricvehiclesbecomewidespread,theironboardbatteriescouldbeusedforESS,byprovidingsomeofthesupportingor“ancillary”servicesintheelectricitymarketsuchasprovidingcapacity,spinningreserve,orregulationservices,orinsomecases,byprovidingload‐levelingorenergyarbitrageservicesbyrechargingwhendemandislowtoprovideelectricityduringpeakdemand.

Flywheels–Theserotatingdiscscanbeusedforpowerqualityapplicationssincetheycanchargeanddischargequicklyandfrequently.Inaflywheel,energyisstoredbyusingelectricitytoacceleratearotatingdisc.Toretrievestoredenergyfromtheflywheel,theprocessisreversedwiththemotoractingasageneratorpoweredbythebrakingoftherotatingdisc.

Flywheelsystemsaretypicallydesignedtomaximizeeitherpoweroutputorenergystoragecapacity,dependingontheapplication.Low‐speedsteelrotorsystemsareusuallydesignedforhighpoweroutput,whilehigh‐speedcompositerotorsystemscanbedesignedtoprovidehighenergystorage.Amajoradvantageofflywheelsistheirhighcyclelife—morethan100,000fullcharge/dischargecycles.

Scale‐powerversionsofthesystem,a100kWversionusingmodifiedexistingflywheelswhichwasaproofofconceptonapproximatelya1/10thpowerscale,performedsuccessfullyindemonstrationsfortheNewYorkStateEnergyResearchandDevelopmentAuthorityandtheCaliforniaEnergyCommission.

EnergyStorageApplicability

Althoughthelistofenergystoragetechnologiesdiscussedaboveisnotall‐inclusive,itbeginstoillustratethepointthatnoteverytypeofstorageissuitableforeverytypeofapplication.Typicaluseapplicationsforenergystoragetechnologiesmayinclude:

EnergyManagement–Batteriescanbeusedtoprovidedemandreductionbenefitsattheutility,commercialandresidentiallevel.Batteriescanbeidealordesignedtoreplacetraditionalgaspeakingresources.Theycanalsobeusedasshort‐termreplacementduringemergencyconditions.

LoadandResourceIntegration–Energystoragesystemscanbedesignedtosmooththeintermittencycharacteristicsofspecificloadsand/orsolarsystemsduringcloudmigrations.

AncillaryServices–Flywheelsandbatterieshavethepotentialtobalancepowerandmaintainfrequency,voltageandpowerqualityatspecifiedtolerancebands.

GridStabilization–PumpedHydro,CAESandvariousbatteriescanimprovetransmissiongridperformanceaswellasassistwithrenewablegenerationstabilization.

Page 53: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐53

Becauseofthedifferentusecasepotentialsthetechnologiescanbeimplementedinaportfoliostrategy.Therearefourchallengesrelatedtothewidespreaddeploymentofenergystorage:

CostCompetitiveEnergyStorageTechnologies(includingmanufacturingandgridintegration)

ValidatedReliability&Safety

EquitableRegulatoryEnvironment

IndustryAcceptance

TEPshowstheneedtodevelopaportfoliooffuturestoragetechnologiesthatwillsupportlong‐termgridreliability.Theneedforfuturestoragetechnologiesisfocusedonsupportingtheneedforquickresponsetimeancillaryservices.Theseservicesarelistedbelow:

LoadFollowing/Ramping

Regulation

VoltageSupport

PowerQuality

FrequencyResponse

Page 54: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐54

TEPEnergyStorageProject

TheprimaryadvantageofanEnergyStorageSystem,inthecontextofalargeutility,isofteninitsabilitytoveryrapidlychangepoweroutputlevels,muchfasterthantheproportionalgovernorresponserateofanyconventionalthermalgenerationsystem.ThisnaturallyleadstotheusagecasesofanESSbeingcenteredonshorttermbalancing‐typeactivities.AnadditionalstrengthisthatoperatingcostsofanESSaregenerallyfixedandindependentofusage.Incontrast,gasturbinesystemshavealimitednumberofstartandstopcyclesandthereforehaveanappreciablecosttoactivate,noraretheynecessarilyonlinewhenneeded.

Inthespringof2015,TEPissuedarequestforproposalsfordesignandconstructionofautility‐scaleenergystoragesystem.TEPsoughtaprojectpartnertobuildandowna10MWstoragefacilityundera10‐yearagreement.TEPwaslookingforacost‐effective,provenenergystoragesystemthatwouldhelpintegraterenewableenergyintoitselectricgrid.

Figure10–LithiumIonBatteryStoragePlant

Theaggressivenatureofthebiddingcompaniesfarexceededexpectations.InitssolicitationTEPreceivedatotalof21bids;20bidsforbatterytechnologyandonebidforflywheeltechnology.Withinthebatterycategory,therewere7differentbatterytypesproposed.Ultimately,TEPwasabletoselecttwowinningbids.Onecompanywillprovidea10MW,LithiumNickel‐Manganese‐Cobaltfacility;andaseparatecompanywillprovidea10MW,LithiumTitanatefacilitytogetherwitha2MWsolarfacility.EachoftheseprojectsrepresentsasignificantopportunityforTEP,whowillbeabletoobtainupto20MWoftotalstoragecapacityforlessthantheoriginalcostestimatetoacquire10MW.Additionally,TEPwillbeabletoassesstheoperationalimpactsoftwoofthepredominantLithiumtechnologiesavailabletoday.

While20MWsrepresentsonlyapproximately1%ofTEP’sloadatanygiventime,itislargeenoughtohavemeasurableimpactonthegrid.Assumingtheperformancefromthesefirsttwoinstallationsisfavorable,TEPwouldthenconsiderESSasanoptionforancillarysupportand/orinsupportofexpandedrenewableapplications.TEPanticipatesthatthestorageprojectswillbeinserviceduringtheearlymonthsof2017.

Page 55: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐55

ThefollowingisanarrativefromLazard’sfirstversionofitsLevelizedCostofEnergyAnalysis13.Lazard’sfirstversionofitsLevelizedCostofStorageAnalysis(“LCOE1.0”)providesanindependent,in‐depthstudythatcomparesthecostsofenergystoragetechnologiesforparticularapplications.14Thestudy’spurposeistocomparethecost‐effectivenessofeachtechnologyonan“applestoapples”basiswithinapplications,andtocompareeachapplicationtoconventionalalternatives.15KeyfindingsofLCOS1.0include:1)selectenergystoragetechnologiesarecost‐competitivewithcertainconventionalalternativesinanumberofspecializedpowergridusesand2)industryparticipantsexpectcoststodecreasesignificantlyinthenextfiveyears,drivenbyincreasinguseofrenewableenergygeneration,governmentalandregulatoryrequirementsandtheneedsofanagingandchangingpowergrid.

LAZARD’S STORAGE ANALYSIS: KEY FINDINGS 

CostCompetitiveStorageTechnologies

Selectenergystoragetechnologiesarecost‐competitivewithcertainconventionalalternativesinanumberofspecializedpowergriduses,butnonearecost‐competitiveyetforthetransformationalscenariosenvisionedbyrenewableenergyadvocates.

Althoughenergystoragetechnologyhascreatedagreatdealofexcitementregardingtransformationalscenariossuchasconsumersandbusinesses“goingoffthegrid”ortheconversionofrenewableenergysourcestobaseloadgeneration,itisnotcurrentlycostcompetitiveinmostapplications.However,someusesofselectenergystoragetechnologiesarecurrentlyattractiverelativetoconventionalalternatives;theseusesrelateprimarilytostrengtheningthepowergrid(e.g.,frequencyregulation,transmissioninvestmentdeferral).

Today,energystorageappearsmosteconomicallyviablecomparedtoconventionalalternativesinusecasesthatrequirerelativelygreaterpowercapacityandflexibilityasopposedtoenergydensityorduration.Theseusecasesincludefrequencyregulationand—toalesserdegree—transmissionanddistributioninvestmentdeferral,demandchargemanagementandmicrogridapplications.Thisfindingillustratestherelativeexpenseofincrementalsystemdurationasopposedtosystempower.Putsimply,“batterylife”ismoredifficultandcostlytoincreasethan“batterysize.”Thisislikelywhythepotentiallytransformationalusecasessuchasfullgriddefectionarenotcurrentlyeconomicallyattractive—theyrequirerelativelygreaterenergydensityandduration,asopposedtopowercapacity

LCOS1.0findsawidevariationinenergystoragecosts,evenwithinusecases.Thisdispersionofcostsreflectstheimmaturityoftheenergystorageindustryinthecontextofpowergridapplications.Thereisrelativelylimitedcompetitionandamixof“experimental”andmorecommerciallymaturetechnologiescompetingattheusecaselevel.Further,seeminglyasaresultofrelativelylimitedcompetitionandlackofindustrytransparency,somevendorsappearwillingtoparticipateinusecasestowhichtheirtechnologyisnotwellsuited

13Lazardisapreeminentfinancialadvisoryandassetmanagementfirm.Moreinformationcanbefoundathttps://www.lazard.com14LazardconductedtheLevelizedCostofStorageanalysiswithsupportfromEnovationPartners,anleadingenergyconsultingfirm.15Energystoragehasavarietyofuseswithverydifferentrequirements,rangingfromlarge‐scale,powergrid‐orientedusestosmall‐scale,consumer‐orienteduses.TheLCOSanalysisidentifies10“usecases,”andassignsdetailedoperationalparameterstoeach.Thismethodologyenablesmeaningfulcomparisonsofstoragetechnologieswithinusecases,aswellasagainsttheappropriateconventionalalternativestostorageineachusecase.

Page 56: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐56

FutureEnergyStorageCostDecreases

Industryparticipantsexpectcoststodecreasesignificantlyinthenextfiveyears,drivenbyincreasinguseofrenewableenergygeneration,governmentpoliciespromotingenergystorageandpressuringcertainconventionaltechnologies,andtheneedsofanagingandchangingpowergrid.

Industryparticipantsexpectincreaseddemandforenergystoragetoresultinenhancedmanufacturingscaleandability,creatingeconomiesofscalethatdrivecostdeclinesandestablishavirtuouscycleinwhichenergystoragecostdeclinesfacilitatewiderdeploymentofrenewableenergytechnology,creatingmoredemandforstorageandspurringfurtherinnovationinstoragetechnology

CostdeclinesprojectedbyIndustryparticipantsvarywidelybetweenstoragetechnologies—lithiumisexpectedtoexperiencethegreatestfiveyearbatterycapitalcostdecline(~50%),whileflowbatteriesandleadareexpectedtoexperiencefiveyearbatterycapitalcostdeclinesof~40%and~25%,respectively.Leadisexpectedtoexperience5%fiveyearcostdecline,likelyreflectingthefactthatitisnotcurrentlycommerciallydeployed(and,possibly,theoptimismofitsvendors’currentquotes)

Themajorityofnear‐tointermediate‐costdeclinesareexpectedtooccurasaresultofmanufacturingandengineeringimprovementsinbatteries,ratherthaninbalanceofsystemcosts(e.g.,powercontrolsystemsorinstallation).Therefore,usecaseandtechnologycombinationsthatareprimarilybattery‐orientedandinvolverelativelysmallerbalanceofsystemcostsarelikelytoexperiencemorerapidlevelizedcostdeclines.Asaresult,someofthemost“expensive”usecasestodayaremost“levered”torapidlydecreasingbatterycapitalcosts.Ifindustryprojectionsmaterialize,someenergystoragetechnologiesmaybepositionedtodisplaceasignificantportionoffuturegas‐firedgenerationcapacity,inparticularasareplacementforpeakinggasturbinefacilities,enablingfurtherintegrationofrenewablegeneration

Seethefullreportathttps://www.lazard.com/media/2391/lazards‐levelized‐cost‐of‐storage‐analysis‐10.pdf

Page 57: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐57

OTHER RESOURCE PLANNING TOPICS 

Energy Imbalance Market 

Energyimbalanceonanelectricalgridoccurswhenthereisadifferencebetweenreal‐timedemand,orloadconsumption,andgenerationthatisprescheduled.Priortotheemergenceofrenewableenergytechnologyonthegrid,balancingoccurredtocorrectoperatinglimitswithin30minutes.Flowsareoftenmanagedmanuallybysystemoperatorsandtypicallybilaterallybetweenpowersuppliers.Theintermittentcharacteristicsofwindandsolarresourceshaveraisedconcernsabouthowsystemoperatorswillmaintainbalancebetweenelectricgenerationanddemandinsmallerthanthirtyminuteincrements.EnergyImbalanceMarkets(“EIMs”)createamuchshorterwindowmarketopportunityforbalancingloadsandresources.AnEIMcanaggregatethevariabilityofresourcesacrossmuchlargerfootprintsthancurrentbalancingauthoritiesandacrossbalancingauthorityareas.Thesubhourlyclearing,insomecasesdownto5minutespotentiallyprovideseconomicadvantagetoparticipantsinthemarket.EIMsproposetomoderate,automateandeffectivelyexpandsystem‐widedispatchwhichcanhelpwiththevariabilityandintermittencyofrenewableresources.EIMsboasttocreatesignificantreliabilityandrenewableintegrationbenefitsbysharingresourcereservesacrossmuchlargerfootprints.

CAISO–EIM

OnNovember1,2014,theCAISOwelcomedPacifiCorpintothewesternEIM.Nevada‐basedNVEnergybeganactiveparticipationintheEIMonDecember1,2015.ThisvoluntarymarketserviceisavailabletoothergridsintheWest.SeveralWesternutilitieshavecommittedtojointheEIM.Meanwhile,workisunderwayforPugetSoundEnergyinWashingtonandArizonaPublicServicetoenterthereal‐timemarketinOctober2016.Inthefallof2015,PortlandGeneralElectricandIdahoPowereachannouncedtheirintentionstopursueEIMparticipation.

ParticipantsintheEIMexpecttorealizeatleastthreebenefits: 

Produceeconomicsavingstocustomersthroughlowerproductioncosts

ImprovevisibilityandsituationalawarenessforsystemoperationsintheWesternInterconnection

Improveintegrationofrenewableresources

TEPhascontractedwiththeenergyconsultingfirmE3toperformastudytoevaluatetheeconomicbenefitsofTEPparticipatingintheenergyimbalancemarket.E3willevaluateEIMbenefitstoTEPbasedonasetofstudyscenariosdefinedthroughdiscussionswithTEPtoreflectTEPsysteminformation,includingloads,resources,andpotentialtransmissionconstraintsforaccesstomarketsforreal‐timetransactions.TheprojectanalysisbeganinFebruary2016andisexpectedtobecompletedbytheendofJune,2016.TEPwillthenevaluatetherelevantcostsandbenefitsofjoiningthewesternEIM.

Chapter5

Page 58: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐58

Natural Gas Storage 

Naturalgasisafuelsourcethatproduceslesscarbondioxidethancoalforagivenunitofenergygeneration.Naturalgas‐poweredelectricgenerationcanalsobemoreresponsivetoandsupportiveofthevariabilityandintermittencyofrenewablegeneration.Naturalgasusagehashistoricallyundergoneseasonalflucutationswithhigherconsumptionisduringthewintermonthsduetoresidentialandcommercialheating.Thedisplacementofcoalandtheemergenceofrenewablegenerationwilllikelyshiftgasdemandincreasestothesummermonths.Asutilitiespotentiallybegantoleanmoretowardnaturalgas‐poweredelectricgeneration,anensuingissueorconcernistheabilityofsupplyanddeliverabilitytomeetthisincreaseddemand,thusnaturalgasstorageisbeingconsidered.

Naturalgasispivotalinmaintainingareliableelectricgrid.Naturalgasstorageprovidesareliabilitybackstoptoamultitudeofdisruptionsthatmayimpactthedeliveryofnaturalgas.Storagehelpstolevelthebalanceofproduction,whichisrelativelyconstant,andtheseasonallydrivendemandorconsumption.Gascanbeinjectedintostoragewhiledemandislowandreleasedforconsumptionwhiledemandishighorwhiletherearedisruptionsinsupply.Muchlikewaterstoredbehinddamsallowsfortimelyirrigationofseasonalcrops.Naturalgasistypicallystoredundergroundandprimarilyinthreedifferentformations;depletedoiland/orgasreservoirs,aquifersandsaltcavernformations.

Figure11–NaturalGasStorageTypes

Source:EIAEnergyInformationAdministrationDepletedReservoirs–Thereservoirsresultfromthevoidremaininginalreadyrecoveredgasoroil.Depletedreservoirsaremorewidelyavailableandthemostutilized.Thisformofstorageisthemostcommonfornaturalgasstorage.Theiravailability,ofcourse,isdependentonthelocationofexistingwellsandpipelineinfrastructure.Tomaintainadequatewithdrawalpressure,upto50%ofthegascapacitybecomesunrecoverablecushiongas,thisdependsonhowmuchnativegasremainsinthereservoir.Injectionandwithdrawalratesarealsodependentonthegeologicalcharacteristicsofthesite.

Page 59: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐59

Aquifers–TheuseofaquifershasbeenmoreprevalentintheMidwesternUnitedStates.Inthecaseofdepletedgasandaquiferstoragereservoirs,theeffectivenessofstorageisprimarilydependentonthegeologicalconditions.Therockformationporosity,permeability,andretentioncapabilityareimportant.Asuitableaquiferisonethatisoverlaidwithimpermeable“cap”layer.Unlikedepletedreservoirs,whereexpensiveinfrastructurewasinstalledduringtheexplorationandextractionofoilandgas,aquifersrequireextensivecapitalinvestment.Sinceaquifersarenaturallyfullofwater,insomeinstancespowerfulinjectionequipmentmustbeused,toallowsufficientinjectionpressuretopushdowntheresidentwaterandreplaceitwithnaturalgas.Aquiferstypicallyoperatewithonewithdrawalperiodperyear;thisisbecauseofslowfilltopushwaterback.

SaltCaverns–ThebestopportunityfornaturalgasstorageinArizonaandintheSouthwestmightbeinsaltcaverns.Saltcavernsallowforhighwithdrawalandinjectionratesofnaturalgas.Thismakessaltcavernsidealtomeetdemandincreasesortooperateasemergencyback‐upsystems.Saltcavernsarecreatedthroughaprocesscalledsolutionmining;wherefreshwaterisblastedintosaltformationsandthemixtureisflushedtothesurfacecreatingachamber.Thechambersarestructurallystrongandextremelyairtight.Whilecushiongasisstillrequiredata20%to30%level,itislessthanrequiredfordepletedreservoirs.

Integration of Renewables 

ThevalueandcostofrenewablesolarPVisestimatedtochangewithincreasedpenetration.TodeterminethevalueofsolarPV,it’simperativetounderstanditsrelationshiptoconsumerload.InthecaseofDistributedGeneration,mostrenewablesolarissited‘behindthemeter’oroncustomerfacilities.TherelationshipofaDGsolarinstallationataresidentialsiteisassumedtobedifferentthananinstallationatacommercialsite.Wecanassumethatresidentialpeakloadoccurssoonafterconsumersarrivehomefromwork.Commercialpeaktendstooccurduringtheearlytomid‐afternoonhours.Thisisanimportantdistinctioninthisdiscussionbecausethecostsandvaluevarybetweenthemultiplecustomertypes.However,forthisdiscussion,wewillreferonlytotheimpactonthesysteminitsentiretyandforsolarasawhole;DGandcommunity‐scaleinstallations.

Historically,electricutilitieswithpredominantairconditioningloadsetapeakdemandbetween4:00PMto5:00PMonasummerday.SolarPVcanhelpreducethispeakbutnotatthefullpotentialofitssolaroutput.Fixedarraysolarpeakproductionistypicallyat12:00to1:00PM,whilesingle‐axistrackingsystemscanexpanditspotentialtocoincidemorewiththeretailpeakdemand.TEP’scurrentrenewableportfolio(toincludeDGandwind)isatapproximately6%of2030retailenergyprojection.

Chart9belowdemonstratesthattheexistingpenetrationofsolaralreadyhasanobservablereductiontoretailpeakdemand.Closerexaminationalsorevealsthatthenetpeakisbeginningtoshifttotheright.Thereductiontothepeakin2030fromexistingsolarisapproximately3%.Whileareductiontoretailpeakisobserved,only30%ofthesolarinstalledcapacitycontributestothatreduction.

TEPiscommittedtomeetingthe15%RESby2025.Bymaintainingthatcommitmentthrough2030,thesolarcomponentoftherenewableportfolioreducespeakbyanother2.7%.Thoughthereisanobviousreductioninpeak,thetimethepeakissetisshiftingclosertothelastdiurnalhourofatypicalclear‐skysummerday(7:00to8:00PM).Itissignificantthentonotethatthoughweintroducea30%renewabletargetwithahighpenetrationofsolar,thereductiontothenewshifted(7:00PM)peakattributedtosolarisbeginningtodiminish.Weobservea1.8%reductiontoretailpeakbutasignificantdrop(from30%to18%)topeakcontributionfromtheincrementalsolarcapacityadditions.Asretailloadgrows,solarPV(withoutstoragecapabilities)cannotcontributetothereductionofpeakdemandbeyond7:00PM;regardlessofitspenetration.

Page 60: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐60

Chart9–ImpactofIncreasedSolarProduction(DuckCurve)

Whileitcanbearguedthatsolarmaycontributetoreducedlosses,toapportionedcapacityreductions(generationandtransmission),andcarbonemissionreductionsamongotherbenefits,wenotefromthechartabovethatotherchallengesarise.Asthesunisrising,electricloadstabilizesandbeginsanascenttowardthepeak.IncreasedpenetrationofsolarcreatesarapidnetdropinloadandTEPmusthavegeneratorsthatarecapableoframpingdownatafastrate.Mostbase‐loadunitssuchascoalandnaturalgas‐steamarechallengedtorespondtothisrampdownandsubsequentrampup.Itisatthispointthatthenetreductioninloadcancreatetheneedforrapidrespondinggeneratorstoregulatetheinitialsteepdeclineinloadfollowedbyanimmediaterise.Fromaresourceplanningcontext,withtheincreasingpenetrationofsolarsystems,wemusttakeintoconsiderationtherightcombinationofresourcestorespondtothevariabilityandintermittencyofrenewablesystems.Aportfoliowithahighpenetrationofsolarandotherrenewablesmaynecessitatetheinstallationofreciprocatinginternalcombustionenginesand/orstorageintheformofbatteriesornaturalgas.

   

Page 61: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐61

Natural Gas Reserves 

Provenreservesofnaturalgasareestimatedquantitiesthatanalysesofgeologicalandengineeringdatahavedemonstratedtobeeconomicallyrecoverablefromknownreservoirsinthefuture.AccordingtoEIA,majoradvancesinnaturalgasexplorationandtechnologyhasincreasedreservesin2014to388.8trillioncubicfeet(Tcf)from354.0Tcfreservesin2013.

Table12–U.SProvedReservesandReserveChanges(2013to2014)  Wet Natural Gas ‐Tcf

U.S. proven reserves at December 31, 2013  354.0 

      Total discoveries  50.5 

      Net revisions  1.0 

      Net Adjustments, Sales, Acquisitions  11.5 

      Production  ‐28.1 

Net additions to U.S. proved reserves  34.8 

U.S. proven reserves at December 31, 2014  388.8 

Percent change in U.S. proved reserves  9.8% Notes: Total natural gas includes natural gas plant liquids. Columns may not add to total because of independent rounding. Source: U.S. Energy Information Administration, Form EIA‐23L, Annual Survey of Domestic Oil and Gas Reserves 

Provenreservesareaddedeachyearwithsuccessfulexploratorywellsandasmoreislearnedaboutfieldswherecurrentwellsareproducing.Theapplicationofnewtechnologiescanconvertpreviouslyuneconomicnaturalgasresourcesintoprovenreserves.U.S.provenreservesofnaturalgashaveincreasedeveryyearsince1999.Figure13illustratesthedistributionofthereservesbystateandoffshorearea.

Figure13–EIANaturalGasProvenReservesbyState/Area(2014)

Page 62: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐62

Utility Ownership in Natural Gas Reserves 

AsTEPtransitionsitsgenerationportfolioawayfromcoal‐firedresourcestowardsmorerelianceoncleanermoreefficientnaturalgasresources,theCompanyhasbeenresearchingnewwaystolockinlong‐termfuelpricestabilityfornaturalgas.Onepotentialsolutionbeingexploredbyanumberofgasandelectricutilitiesistheinvestmentandownershipinphysicalnaturalgasreserves.

Overthelastfewyears,anumberofutilitieshavepartneredwiththirdpartynaturalgasproducerstodeveloppartnershipstoacquireanddevelopnaturalgasreserves.ThesepartnershipswereformedasanalternativeapproachtoexistingfinancialhedgingpracticesandwereseenasawayforCompaniestodevelopalong‐termphysicalhedgeforitsexpandinggasgenerationfleet.

Productionofoilandassociatednaturalgashasgrownsubstantiallyoverthelastseveralyearsleadingtoasupplysurplusthathasdepressednaturalgaspricestothelowesttheyhavebeenintwentyyears.Asaresult,thisenvironmentcreatesopportunitiesforutilitiesandotherlargegaspurchaserstoacquirenaturalgasreservesathistoriclows.ThefigurebelowhighlightsanumberofCompanieswhohavesuccessfullydevelopedpartnershipsaroundnaturalgasreserveownership.

Figure14‐OverviewofRecentUtility‐ThirdPartyGasReserveProjects

InthecontextofTEPcoaldiversificationstrategyanditsmovetorelyonmorenaturalgas,theCompanyplanstoexplorehowitmightpursuesimilarpartnershipswithregionalgasandelectricutilitiesinaneffortsecurelong‐termnaturalgaspricestabilityforitscustomers.

Page 63: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐63

Coal‐FiredPowerPlantsinAZandNM1

Page 64: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐64

Page 65: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐65

FUTURE RESOURCE OPTIONS AND MARKET ASSUMPTIONS  Inconsideringfutureresources,theresourceplanningteamevaluatesamixofrenewableandconventionalgenerationtechnologies.Thismixoftechnologiesincludedbothcommerciallyavailableresourcesandpromisingnewtechnologiesthatarelikelytobecometechnicallyviableinthenearfuture.TheIRPprocesstakesahigh‐levelapproachandfocusesonevaluatingresourcetechnologiesratherthanspecificprojects.Thisapproachallowstheresourceplanningteamtodevelopawide‐rangeofscenariosandcontingenciesthatresultinaresourceacquisitionstrategythatcontemplatesfutureuncertainties.Assumptionsoncostandoperatingcharacteristicsaretypicallygatheredfromseveraldatasources.BelowisalistofresourcesthatTEPreliesontocompilecapitalcostassumptionsforthermalandrenewableresources:

U.S.EnergyInformationAdministration‐https://www.eia.gov/forecasts/aeo/electricity_generation.cfm

WesternElectricityCoordinatingCouncil(asrecommendedbyE3)‐https://www.wecc.biz/Reliability/2014_TEPPC_Generation_CapCost_Report_E3.pdf

Black&Veatch‐http://bv.com/docs/reports‐studies/nrel‐cost‐report.pdf

NationalRenewableEnergyLaboratory‐http://www.nrel.gov/analysis/re_futures/index.html

Lazard‐https://www.lazard.com/media/2390/lazards‐levelized‐cost‐of‐energy‐analysis‐90.pdf;https://www.lazard.com/media/2391/lazards‐levelized‐cost‐of‐storage‐analysis‐10.pdf

TEPreliesonanumberofthird‐partydatasourcesandconsultantstoderiveassumptioninitson‐goingplanningpractices.Inaddition,informationgatheredthroughourcompetitivebiddingprocessorrequestforproposalprocesscanbeusedtoputbothself‐buildresourcesandmarket‐basedpurchasedpoweragreementsonacomparativebasis.

 

Chapter6

Page 66: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐66

 Generation Resources – Matrix of Applications 

Table8providesabriefoverviewofthetypesofgeneratingresourcesthatwillbeincludedandevaluatedintheresourceplanningprocessforthe2017FinalIRP.Foreachtechnologytypeabriefsummaryofpotentialrisksandbenefitsarelisted.Inaddition,attributessuchascosts,sitingrequirements,dispatchability,transmissionrequirementsandenvironmentalpotentialaresummarized.

Table8‐ResourceMatrix

Category  Type 

Zero or Low 

Carbon Potential 

State of Technology 

Local Area Option 

Intermittent  Peaking Load 

Following Base Load 

Energy Efficiency Energy 

Efficiency Yes  Mature  Yes       

Demand Response 

Direct Load Control 

Yes  Mature  Yes     

Renewables  

 Wind    Yes    Mature          

 Solar PV    Yes   Mature   Yes

 Solar Thermal    Yes   Mature     Storage (1)  

Conventional 

Reciprocating Engines 

  Mature        

Combustion Turbines  

   Mature   Yes        Combined 

Cycle (NGCC)    Mature   Yes  

Small Modular Nuclear (SMR)   

 Yes    Emerging         (1) NaturalGashybridizationorthermalstoragecouldallowresourcetobedispatchedtomeetutilitypeakloadrequirements.

Page 67: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPow

er

Page‐67

Comparison of Resources 

Generationplanningandresourceanalysiscanbeperformedbyusingawidespectrum

oftoolsandmethodologies.Priortorunningdetailed

simulationmodelsforthe2017FinalIRP,theTEPresourceplanningteam

willcom

binethesourceinformationandsettleonthecostparam

etersforthe

varyingtechnologies.Table9andTable10show

nbelowdem

onstrateacom

parisonofcapitalcostestimates,usedbyTEPinthe2012and2014IRPs

versuscostspublishedbyThird‐PartySources,forthermalandrenew

ableresourcesrespectively.Thetablesdem

onstratethevaryingrangeofcosts,

evenwithineachtechnology.Inthe2017FinalIRP,theresourceplanninggroupwillincorporatetheinputfromthird‐partysources,stakeholdersand

otherdatasourcestoderiveareasonablesetofcostinputs(construction,EHV/interconnection,constructiontoincludeITC,fixedO&M,variableO&M,

andfuelcosts).

Table9–CapitalCostforThermalResources

Plant Construction Costs 

Units 

Small A

eroderivative

 Combustion Turbine 

Small Frame 

Combustion 

Turbine 

Natural G

as 

Reciprocating 

Engines 

Small M

odular 

Reactor (SMR) 

Natural G

as 

Combined Cycle 

(NGCC) 

 2012 IR

P  

 2012 $/kW  

$1,156 

$779 

‐ ‐ 

$1,320 

 2014 IR

P  

 2014 $/kW  

$1,062 

$808 

‐ ‐ 

$1,367 

 Third Party Source  

 2014 $/kW  

$1,150 

$825 

$1,300 

‐ $1,125 

 Third Party Source  

 2016 $/kW  

$800 ‐ $1,000 

$800 ‐ $1,000 

$1,150 

‐ $1,000 ‐ $1,300 

 Prelim

inary IRP Estim

ate   2016 $/kW  

$1,250 

$800 

$1,200 

$6,400 

$1,300 

Table10–CapitalCostforRenew

ableResources

Plant Construction Costs 

Units 

Solar Th

erm

al 

 6 Hour Storage 

(100 M

W) 

Solar 

Fixed PV 

(20 M

W) 

Solar Single Axis Tracking

 (20 M

W) 

Wind Resources

(50 M

W) 

 2012 IR

P  

 2012 $/kW 

$5,650 

$2,350 

$2,549 

$2,400 

 2014 IR

P  

 2014 $/kW 

$7,144 

$1,993 

$2,290 

$2,278 

 Third Party Source  

 2014 $/kW 

$7,100 

$3,325 

$3,800 

$2,000 

 Third Party Source  

 2016 $/kW 

$10,000 ‐ $10,300 

$1,400 ‐ $1,500 

$1,600 ‐ $1,750 

$1,250 ‐ $1,700 

 Prelim

inary IRP Estim

ate   2016 $/kW 

$10,000 

$1,500 

$1,600 

$1,450 

Page 68: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐68

LEVELIZED COST COMPARISONS 

Thecalculationofthelevelizedcostofelectricity(“LCOE”)providesacommonmeasuretocomparethecostofenergyacrossdifferentdemandandsupply‐sidetechnologies.TheLCOEtakesintoaccounttheinstalledsystempriceandassociatedcostssuchascapital,operationandmaintenance,fuel,transmission,taxincentivesandconvertsthemintoacommoncostmetricofdollarspermegawatthour.ThecalculationfortheLCOEisthenetpresentvalueoftotalcostsoftheprojectdividedbythequantityofenergyproducedoverthesystemlife.

Becauseintermittenttechnologiessuchasrenewablesdonotprovidethesamecontributiontosystemreliabilityastechnologiesthatareoperatorcontrolledanddispatched,theyrequireadditionalsysteminvestmentforsystemregulationandbackupcapacity.Aswithanyprojection,thereisuncertaintyaboutallofthesefactorsandtheirvaluescanvaryregionallyandacrosstimeastechnologiesevolveandfuelpriceschange.Furtherresourceutilizationisdependentonmanyfactors;theportfoliomix,regionalmarketprices,customerdemandandmust‐runrequirementsaresomeconsiderationsoutsideofLCOE.

TheLCOEprojectioncontainsmanyfactorsthatwillvarybetweennowandwhenthefinalIRPisfiledonApril1,2017.Assuch,TEPwillderivethelevelizedcostsatthetimethatthecapitalcostsandotherinputsarepreparedforfinalanalysis.

 

Page 69: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPow

er

Page‐69

REN

EWABLE TEC

HNOLO

GIES – COST DETAILS 

Table11includestherenewabletechnologycostsforthe2016Prelim

inaryIntegratedResourcePlan.

Table11‐Renew

ableResourceCostAssumptions

Plant Construction Costs 

Units 

Solar Th

erm

al  

 6 Hour Storage 

(100 M

W) 

Solar  

Fixed PV 

(20 M

W) 

Solar Single Axis 

Tracking 

 (20 M

W) 

Wind Resources 

(50 M

W) 

  Project Lead Tim

e   

 Years  

  Installation Years   

 First Year Available  

2020 

2018 

2018 

2018 

  Peak Capacity   

 MW  

100 

20 

100 

50 

  Plant Construction Cost   

 2016 $/kW  

$9,800 

$1,450 

$1,550 

$1,250 

  EHV/Interconnection Cost   

 2016 $/kW  

200 

50 

50 

200 

  Total Construction Cost   

 2016 $/kW  

$10,000 

$1,500 

$1,600 

$1,450 

 

 Operating Characteristics  

    

    

  

 Fixed

 O&M   

 2016 $/kW  

$80.00 

$13.00 

$10.00 

$40.00 

 Typical Capacity Factor   

 Annual %  

50% 

29% 

25% 

33% 

 Expected Annual Output   

 GWh  

438 

110 

127 

145 

 Net Coinciden

t Peak  

 NCP%  

85% 

33% 

51% 

13% 

 Water Usage  

 Gal/M

Wh  

800 

 ITC   

Percent  

30% 

30% 

30% 

‐ 

 PTC

  $/M

Wh 

‐ ‐ 

‐ $23.00 

 

 Levelized

 Cost of En

ergy  

 $/M

Wh  

$161  

$54  

$70  

$49  

 

Page 70: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016Prelim

inaryIntegratedResourcePlan

Page‐70

CONVEN

TIONAL TECHNOLO

GIES – COST DETAILS 

Table12includestheconventionalresourcecostassum

ptionsforthe2016Prelim

inaryIntegratedResourcePlan.

Table12‐ConventionalResourceCostAssumptions

Plant Construction Costs 

Units 

Small 

Aeroderivative

 Combustion 

Turbine 

Small Frame 

Combustion 

Turbine 

Natural G

as 

Reciprocating 

Engines 

Small 

Modular 

Reactor 

(SMR) 

Natural G

as 

Combined 

Cycle 

(NGCC) 

  Project Lead Tim

e   

 Years  

12 

  Installation Years   

 First Year Available  

2020 

2020 

2018 

2028 

2020 

  Peak Capacity , M

W  

 MW  

45 

75 

300 

550 

  Plant Construction Cost   

 2016 $/kW  

$1,200 

$770 

$1,070 

$6,000 

$1,135 

  EHV/Interconnection Cost   

 2016 $/kW  

50 

30 

30 

400 

165 

  Total Construction Cost   

 2016 $/kW  

$1,250 

$800 

$1,200 

$6,400 

$1,300 

 

 Operating Characteristics  

    

    

    

 Fixed O&M   

 2016 $/kW  

$12.50 

$13.25 

$17.50 

$29.30 

$16.50 

 Variable O&M   

 2016 $/kW  

$3.50 

$3.75 

$12.50 

$5.00 

$2.00 

 Gas Transportation 

 2016 $/kW  

$16.80 

$16.80 

$16.80 

‐ $16.80 

 Annual Heat Rate   

Btu/kWh  

9,800 

10,500 

9,000 

10,400 

7,200 

 Typical Capacity Factor   

 Annual %  

15% 

8% 

45% 

85% 

50% 

 Expected Annual Output   

 GWh  

59 

53 

2,234 

2,409 

 Fuel Source  

Fuel Source 

Natural G

as 

Natural G

as 

Natural G

as 

Uranium 

Natural G

as 

 Unit Fuel Cost  

$/m

mBtu 

$5.67 

$5.67 

$5.67 

$0.90 

$5.67 

 Net Coincident Peak  

 NCP%  

100% 

100% 

100% 

100% 

100% 

 Water Usage  

 Gal/M

Wh  

150 

150 

50 

 800 

350 

 

 Levelized

 Cost of En

ergy  

 $/M

Wh  

$247  

$306  

$135  

$145  

$103  

Page 71: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐71

ThefollowingisanarrativefromLazard’sninthversionofitsLevelizedCostofEnergyAnalysis.Lazard’sninthversionofitsLevelizedCostofEnergyAnalysis(“LCOE9.0”)analysisprovidesanindependent,in‐depthstudyofalternativeenergycostscomparedtoconventionalgenerationtechnologies.Thecentralfindingsofthestudyare:1)thecostcompetitivenessandcontinuedpricedeclinesofcertainalternativeenergytechnologies;2)thenecessityofinvestingindiversegenerationresourcesforintegratedelectricsystemsfortheforeseeablefuture;and3)theimportanceofrationalandtransparentpoliciesthatsupportamodernandincreasinglycleanenergyeconomy.

Lazard‐https://www.lazard.com/media/2390/lazards‐levelized‐cost‐of‐energy‐analysis‐90.pdf

LAZARD’s LEVELIZED COST OF ENERGY ANALYSIS: KEY FINDINGS 

CostCompetivenessofAlternativeEnergyTechnologies

Certainalternativeenergytechnologies(e.g.,windandutility‐scalesolar)continuetobecomemorecost‐competitivewithconventionalgenerationtechnologiesinsomeapplications,despitelargedecreasesinthecostofnaturalgas.Lazard’sanalysisdoesnottakeintoaccountpotentialsocialandenvironmentalexternalities(e.g.,thesocialcostsofdistributedgeneration,environmentalconsequencesofconventionalgeneration,etc.)orreliability‐orintermittency‐relatedconsiderations(e.g.,transmissionsystemorback‐upgenerationcostsassociatedwithcertainalternativeenergytechnologies)

Despiteasharpdropinthepriceofnaturalgas,thecostofallformsofutility‐scalesolarphotovoltaicandutility‐scalewindtechnologiescontinuetoremaincompetitivewithconventionalgenerationtechnologiesasillustratedbytheproliferationofsuccessfulbidsbyrenewableenergyprovidersinopenpowerprocurementprocesses.

Currently,rooftopsolarPVisnotcostcompetitivewithoutsignificantsubsidies,due,inpart,tothesmall‐scalenatureandaddedcomplexityofrooftopinstallation.However,theLCOEofrooftopsolarPVisexpectedtodeclineincomingyears,partiallyasaresultofmoreefficientinstallationtechniques,lowercostsofcapitalandimprovedsupplychains.Importantly,LazardexcludesfromtheiranalysisthevalueassociatedwithcertainusesofrooftopsolarPVbysophisticatedcommercialandindustrialusers(e.g.,demandchargemanagement,etc.),whichappearsincreasinglycompellingtocertainlargeenergycustomers.

Communitybasedsolarprojects,inwhichmembersofasinglecommunity(e.g.,housingsubdivisions,rentalbuildings,industrialparks,etc.)owndividedinterestsinsmall‐scaleground‐mountedsolarPVfacilities,isbecomingmorewidespreadandcompellingincertainareas.Theseprojects,whichallowparticipantstoreceivecreditsagainsttheirelectricbillseitherbystatestatuteornegotiatedagreementsbetweentheprojectsponsorsandlocalutilities,providesolarenergyaccesstoconsumerswithouttheeconomicmeansorpropertyrightstoinstallrooftopsolarPV.However,whilecommunitysolarprojectsbenefitfromincreasedscaleanddecreasedinstallationcomplexityascomparedtorooftopsolarPV,mostcommunityscaleprojectsarerelativelysmallcomparedtoutility‐scalePVprojects,andarethereforemoreexpensivecomparedtoutility‐scalesolarPV.

Thepronouncedcostdecreaseincertainintermittentalternativeenergytechnologies,combinedwiththeneedsofanagingandchangingpowergridintheU.S.,hassignificantlyincreaseddemandforenergystoragetechnologiestofulfillavarietyofelectricsystemneeds(e.g.,frequencyregulation,transmission/substationinvestmentdeferral,demandchargeshaving,etc.).Industryparticipantsexpectthisincreaseddemandto

Page 72: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐72

drivesignificantcostdeclinesinenergystoragetechnologiesoverthenextfiveyears.Increasedavailabilityoflower‐costenergystoragewilllikelyfacilitategreaterdeploymentofcertainalternativeenergytechnologies.

Energyefficiencyremainsanimportant,cost‐effectiveformofalternativeenergy.However,costsforvariousenergyefficiencyinitiativesvarywidelyandmayfailtoaccountfortheopportunitycostsofforegoneconsumption.

Verylarge‐scaleconventionalandrenewablegenerationprojects(e.g.,IGCC,nuclear,solarthermal,etc.)continuetofaceanumberofchallenges,includingsignificantcostcontingencies,highabsolutecosts,competitionfromrelativelycheapnaturalgasinsomegeographies,operatingdifficultiesandpolicyuncertainty.

TheNeedforDiverseGenerationPortfolios

Despitetheincreasingcost‐competivenessofcertainalternativeenergytechnologies,futureresourceplanningeffortswillrequirediversegenerationfleetstomeetbaseloadgenerationneedsfortheforeseeablefuture.Theoptimalsolutionformanyutilitiesistousealternativeenergytechnologiesasacomplementtoexistingconventionalgenerationtechnologies.Overall,theU.S.willcontinuetobenefitfromabalancedgenerationmix,includingacombinationofalternativeenergyandconventionalgenerationtechnologies.

Whilesomealternativeenergytechnologieshaveachievednotional“gridparity”undercertainconditions(e.g.,best‐in‐classwind/solarresources),suchobservationdoesnottakeintoaccountpotentialsocialandenvironmentalexternalities(e.g.,socialcostsofdistributedgeneration,environmentalconsequencesofconventionalgeneration,etc.),orreliability‐relatedconsiderations.

TheImportanceofRationalandTransparentEnergyPolicies

Therapidlychangingdynamicsofenergycostshaveimportantramificationsfortheindustry,policymakersandthepublic.IntheU.S.,acoordinatedfederalandstateenergypolicy,groundedincostanalysis,couldenablesmarterenergydevelopment,leadingtosustainableenergyindependence,acleanerenvironmentandastrongereconomicbase.

Alternativeenergycostshavedecreaseddramaticallyinthepastsixyears,driveninsignificantpartbyfederalsubsidiesandrelatedfinancingtools,andtheresultingeconomiesofscaleinmanufacturingandinstallation.Manyofthesesubsidieshavealreadyorareexpectedtostepdownorexpireforselectedalternativeenergytechnologies.Akeyquestionforindustryparticipantswillbewhetherthesetechnologiescancontinuetheircostdeclinesandachievewideradoptionwithoutthebenefitofsubsidies

ThepublicnarrativesurroundingalternativeenergytechnologiesremainsfocusedtoalargedegreeonrooftopsolarPV,notwithstandingitssignificantlyhigherLCOErelativetoutility‐scalesolarPVandwind,anditspotentiallyadversesocialeffectsinthecontextofexistingnetmeteringregimes(e.g.,high‐incomehomeownersbenefitingfromsuchregimeswhilestillrelyingonthebroaderpowergrid,andrelatedcosttransferstotherelativelylessaffluent).Thisfocus,combinedwiththeavailabilityofgovernmentincentivesforrooftopsolar,distortsintelligentsystem‐wideintegratedresourceplanningandpolicy.

Seethefullreportathttps://www.lazard.com/media/2390/lazards‐levelized‐cost‐of‐energy‐analysis‐90.pdf

   

Page 73: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐73

Renewable Electricity Production Tax Credit (“PTC”) 

Thefederalrenewableelectricityproductiontaxcreditisaninflation‐adjustedper‐kilowatt‐hour(kWh)taxcreditforelectricitygeneratedbyqualifiedenergyresourcesandsoldbythetaxpayertoanunrelatedpersonduringthetaxableyear.Thedurationofthecreditis10yearsafterthedatethefacilityisplacedinserviceforallfacilities.

InDecember2015,theConsolidatedAppropriationsAct,2016extendedtheexpirationdatefortheproductiontaxcredittoDecember31,2019,forwindfacilitiescommencingconstruction,withaphase‐downbeginningforwindprojectscommencingconstructionafterDecember31,2016.TheActextendedthetaxcreditforothereligiblerenewableenergytechnologiescommencingconstructionthroughDecember31,2016.TheActappliesretroactivelytoJanuary1,2015.

Thetaxcreditamountisadjustedforinflationbymultiplyingthetaxcreditamountbytheinflationadjustmentfactorforthecalendaryearinwhichthesaleoccurs,roundedtothenearest0.1cents.TheInternalRevenueService(“IRS”)publishestheinflationadjustmentfactornolaterthanApril1eachyearintheFederalRegistrar.For2015,theinflationadjustmentfactorusedbytheIRSis1.5336.

Applyingtheinflation‐adjustmentfactorforthe2014calendaryear,aspublishedintheIRSNotice2015‐20,theproductiontaxcreditamountisasfollows:

$0.023/kWhforwind,closed‐loopbiomass,andgeothermalenergyresources $0.012/kWhforopen‐loopbiomass,landfillgas,municipalsolidwaste,qualifiedhydroelectric,and

marineandhydrokineticenergyresources.

ThetaxcreditisphaseddownforwindfacilitiesandexpiresforothertechnologiescommencingconstructionafterDecember31,2016.Thephase‐downforwindfacilitiesisdescribedasapercentagereductioninthetaxcreditamountdescribedabove:

Table13–ProductionTaxCreditPhaseDown

Construction Year (1) PTC Reduction 

2017  PTC amount is reduced by 20%

2018  PTC amount is reduced by 40%

2019  PTC amount is reduced by 60%

(1)Forwindfacilitiescommencingconstructioninyear.

Notethattheexactamountoftheproductiontaxcreditforthetaxyears2017‐2019willdependontheinflation‐adjustmentfactorusedbytheIRSintherespectivetaxyears.Thedurationofthecreditis10yearsafterthedatethefacilityisplacedinservice.

Seehttp://energy.gov/savings/renewable‐electricity‐production‐tax‐credit‐ptcformoredetails.

   

Page 74: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐74

Energy Investment Tax Credit (“ITC”)  

TheConsolidatedAppropriationsAct,signedinDecember2015,includedseveralamendmentstothefederalBusinessEnergyInvestmentTaxCreditwhichapplytosolartechnologiesandotherPTCeligibletechnologies.Notably,theexpirationdateforthesetechnologieswasextended,withagradualstepdownofthecreditsbetween2019and2022.

TheITChasbeenamendedanumberoftimes,mostrecentlyinDecember2015.Thetablebelowshowsthevalueoftheinvestmenttaxcreditforeachtechnologybyyear.Theexpirationdateforsolartechnologiesandwindisbasedonwhenconstructionbegins.Forallothertechnologies,theexpirationdateisbasedonwhenthesystemisplacedinservice(fullyinstalledandbeingusedforitsintendedpurpose).

Table14–InvestmentTaxCreditsbyYearandTechnology

Technology  2016  2017  2018  2019  2020  2021  2022 Future Years 

PV, Solar Water Heating, Solar Space Heating/Cooling, 

Solar Process Heat 30%  30%  30%  30%  26%  22%  10%  10% 

Hybrid Solar Lighting,  Fuel Cells, & Small Wind 

30%  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Geothermal Heat Pumps, Microtubines, 

Combined Heat and Power Systems 

10%  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Geothermal Electric 

10%  10%  10%  10%  10%  10%  10%  10% 

Large 30%  24%  18%  12%  ‐  ‐  ‐  ‐ 

Wind 

SolarTechnologiesEligiblesolarenergypropertyincludesequipmentthatusessolarenergytogenerateelectricity,toheatorcool(orprovidehotwaterforusein)astructure,ortoprovidesolarprocessheat.Hybridsolarlightingsystems,whichusesolarenergytoilluminatetheinsideofastructureusingfiber‐opticdistributedsunlight,areeligible.Passivesolarsystemsandsolarpool‐heatingsystemsarenoteligible.

FuelCellsThecreditisequalto30%ofexpenditures,withnomaximumcredit.However,thecreditforfuelcellsiscappedat$1,500per0.5kilowatt(kW)ofcapacity.Eligiblepropertyincludesfuelcellswithaminimumcapacityof0.5kWthathaveanelectricity‐onlygenerationefficiencyof30%orhigher.

Page 75: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐75

SmallWindTurbinesThecreditisequalto30%ofexpenditures,withnomaximumcreditforsmallwindturbinesplacedinserviceafterDecember31,2008.Eligiblesmallwindpropertyincludeswindturbinesupto100kWincapacity.

GeothermalSystemsThecreditisequalto10%ofexpenditures,withnomaximumcreditlimitstated.Eligiblegeothermalenergypropertyincludesgeothermalheatpumpsandequipmentusedtoproduce,distributeoruseenergyderivedfromageothermaldeposit.Forelectricityproducedbygeothermalpower,equipmentqualifiesonlyupto,butnotincluding,theelectrictransmissionstage.

MicroturbinesThecreditisequalto10%ofexpenditures,withnomaximumcreditlimitstated(explicitly).Thecreditformicroturbinesiscappedat$200perkWofcapacity.Eligiblepropertyincludesmicroturbinesupto2MWincapacitythathaveanelectricity‐onlygenerationefficiencyof26%orhigher.

CombinedHeatandPower(“CHP”)Thecreditisequalto10%ofexpenditures,withnomaximumlimitstated.EligibleCHPpropertygenerallyincludessystemsupto50MWincapacitythatexceed60%energyefficiency,subjecttocertainlimitationsandreductionsforlargesystems.TheefficiencyrequirementdoesnotapplytoCHPsystemsthatusebiomassforatleast90%ofthesystem'senergysource,butthecreditmaybereducedforless‐efficientsystems.

Seehttp://energy.gov/savings/business‐energy‐investment‐tax‐credit‐itcformoredetails.

   

Page 76: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐76

Impacts of Declining Tax Credits and Technology Installed Costs 

Chart10throughChart12shownbelowreflectsthenear‐termcapacitypricedeclinesona$/kWbasisfrom2016‐2022associatedwiththereductionintheinstalledcostsofsolartechnologiesrelativetothelevelizedcostrealizedona$/MWhassumingdifferentlevelsofinvestmenttaxcreditsbyyear.ThesolarITCassumptionsarebasedonthefederalinvestmenttaxcreditassumptionsshownonpage74.

Chart10–SolarPVFixed,ImpactsofDecliningTaxCreditsandTechnologyInstalledCosts

 

Chart11–SolarSAT,ImpactsofDecliningTaxCreditsandTechnologyInstalledCosts

 

$70

$67

$64

$62$63

$65

$74

$54

$56

$58

$60

$62

$64

$66

$68

$70

$72

$74

$76

$0

$200

$400

$600

$800

$1,000

$1,200

$1,400

$1,600

$1,800

$2,000

2016 2017 2018 2019 2020 2021 2022

LCOE, $/M

Wh

Installed Cost, $/kW

Solar PV ‐ Fixed Tilt (20 MW)

$/MWh $/KW

$54 $51 $49 $49 $51 $54

$61

‐$4

$6

$16

$26

$36

$46

$56

$66

$76

$0

$200

$400

$600

$800

$1,000

$1,200

$1,400

$1,600

$1,800

$2,000

2016 2017 2018 2019 2020 2021 2022

LCOE, $/M

Wh

Installed Cost, $/kW

Solar Single Axis Tracking (20 MW)

$/MWh $/KW

Page 77: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐77

Chart12–SolarThermal,ImpactsofDecliningTaxCreditsandTechnologyInstalledCosts

 

Impacts of Declining PTC and Technology Installed Costs 

Chart13shownbelowreflectsthenear‐termcapacitypricedeclinesona$/kWbasisfrom2016‐2022associatedwiththereductionintheinstalledcostsofwindresourcesrelativetothelevelizedcostrealizedona$/MWhassumingdifferentlevelsofproductiontaxcreditsbyyear.ThewindPTCassumptionsarebasedonthefederalproductiontaxcreditassumptionsshownon73.

Chart13–Wind,ImpactsofDecliningProductionTaxCreditsandTechnologyPriceInstalledCosts

$0

$20

$40

$60

$80

$100

$120

$140

$160

$180

$200

$0

$2,000

$4,000

$6,000

$8,000

$10,000

$12,000

2016 2017 2018 2019 2020 2021 2022

LCOE, $/M

Wh

Installed Cost, $/kW

Solar Thermal ‐ 6 Hour Storage (100 MW)

$/MWh $/KW

‐$4

$6

$16

$26

$36

$46

$56

$66

$76

$0

$200

$400

$600

$800

$1,000

$1,200

$1,400

$1,600

$1,800

$2,000

2016 2017 2018 2019 2020 2021 2022

LCOE, $/M

Wh

Installed Cost, $/kW

Wind (50 MW)

$/MWh $/KW

Page 78: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐78

MARKET ASSUMPTIONS 

PermianNaturalGas

TEP’scurrentforwardpriceforecastforPermiannaturalgasstartsat$2.86/MMBtuin2016,andescalatesto$8.93/MMBtuin2035.Chart14‐PermianBasinNaturalGasPricesshowsthe20yearnaturalgaspriceprojectionsinnominaldollars.

Chart14‐PermianBasinNaturalGasPrices

PaloVerde(7x24)MarketPrices

TEP’scurrentforwardpriceforecastfor7x24PaloVerdewholesalemarketpricesstartsat$28.76/MWhin2016,andescalatesto$87.35/MWhin2035.Chart15showsthe20yearwholesalepowerpriceprojectionsinnominaldollars.

Chart15‐PaloVerde(7x24)MarketPrices

$0.00

$1.00

$2.00

$3.00

$4.00

$5.00

$6.00

$7.00

$8.00

$9.00

$10.00

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

$/m

mBtu

 ‐

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

 70.00

 80.00

 90.00

 100.00

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

$/M

Wh

Page 79: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐79

2016 IRP SCENARIOS 

Thefollowingsectionprovidesadescriptionofthedifferentscenariostobeanalyzedinthe2017FinalIRPwhichisdueonApril1,2017.Thereareatotalof7scenariosthatwillbepresentedintheIRP.Thescenariosarelistedandgroupedasfollows;

ScenariosRequestedbyDecisionNo.75068(2014IRP)o EnergyStorageCasePlano SmallNuclearReactorsCasePlano ExpandedEnergyEfficiencyCasePlano ExpandedRenewablesCasePlan

AdditionalProposedScenarioso MarketBasedReferenceCasePlano HighLoadGrowthCasePlano FullCoalRetirementCasePlan

Scenarios Requested in Decision No. 75068 (2014 IRP) 

EnergyStorageCase

Inthiscase,TEPwillexplorethepotentialofEnergyStorageSystems(“ESS”)asameansforsolvingrenewablegenerationintermittencyandvariability.Thecasewillbedesignedtofullymeetrenewableandenergyefficiencystandardsandtotheextentthatpeakingcapacityisrequired,ESSwillbeanalyzedasaresourcetocoverpeakdemandrequirements.ThepotentialandapplicabilityofESSisdescribedinthestoragesectioninChapter4.

SmallNuclearReactorsCase

SmallNuclearReactors(“SMRs”)areatechnologythatcanbeutilizedtolowercarbondioxide(“CO2”)emissions,aswellasotherpollutants,whileprovidingreliable,sustainedandefficientpoweroutput.Inthiscase,TEPwillstudytheimpactofSMRsasaresourcetosupplantretiringbaseloadcoalassets.Thiscasewillbedesignedtofullymeetrenewableandenergyefficiencystandards.ThiscasewillalsobecompliantwiththeCleanPowerPlan.

LowLoadGrowthCaseandExpandedEnergyEfficiency

Forpurposesofthisscenario,itisassumedthatTEPrealizesadditionalenergyefficiencyanddistributedgenerationtargets(abovetheEEstandard).Underthisscenario,TEP’sEEprogramsareexpandedbyprogramdesignand/orbytechnologyefficiencyimprovements.Inaddition,anypotentialminingexpansionswillbeexcludedaswell.

Chapter7

Page 80: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐80

ExpandedRenewablesCase

TEPwillpresentthisscenariotostudytheimpactofexpandedrenewabledevelopment.Underthisscenario,TEPwillincrementallydevelopacommunity‐scalerenewableportfoliothatultimatelyresultsinTEPserving30%ofitsretailloadby2030(withrenewableresources).Inthisscenario,TEPanticipatesthatcomplementaryresourceswillbeneededtomaintainreliabilityandtoachieveresponsivenesstotheintermittentandvariablecharacteristicsofsolarandwindresources.Acombinationofdifferenttechnologies(orindividualtechnologies)willbetestedtocomplementtherenewablesassumptions.

AshigherpercentagesofrenewableresourcesareaddedtoTEP’sresourceportfolio,TEPanticipatestheneedforfutureinvestmentsintransmission,quick‐startgeneration,energystoragedevicesandsmartgridtechnologiesinordertomaintainreliablegridoperations.Forpurposesofreliability,the2016FinalIRPwillstudytheexpansionofbatterystoragetechnology,reciprocatinginternalcombustionenginesandothertechnologytosupportfutureancillaryservicerequirementsforthegrid.

Additional Proposed Scenarios 

MarketBasedReferenceCase

Forpurposesofthe2016FinalIRP,TEPwillagaindevelopaMarketBasedReferenceCaseplan.Underthisscenario,itisassumedthatTEPreliesonthewholesalemarketforlimitedamountsoffirmwholesalepurchasedpoweragreementstomeetitsfuturesummerpeakingrequirements.ThisscenarioprovidessomeinsightsintohowTEP’sresourceportfoliomightlookifthereisadequatesupplyofmerchantresourcecapacitywithintheDesertSouthwestregionoverthelong‐term.Forpurposesofthisscenario,itisassumedthatTEPdevelopsaportfoliooflongandshort‐termpurchasedpoweragreementstocoveritssummerpeakingrequirements.ItisassumedthatTEPlimitsitsrelianceonfirmmarketcapacitypurchasesto400MWperyear.Allotherassumptionsincludingtransmission,CPPcompliance,andrenewabletechnologyupgradesarethesameastheReferenceCaseplan.

HighLoadGrowthCase‐LargeIndustrialCustomerExpansions

Forpurposesofthisscenario,itisassumedthatTEP’speakdemandincreasessignificantlyoverthenextfiveyearsduetoanexpansionofaneworexistinglargeindustrialcustomer.Underthisscenario,TEP’speakdemandincreasesby125MWin2018andagainin2020by125MW(foratotalof250MW,a10%increaseinretaildemand).Thischangeintheforecastwouldresultintheadvancementofbothtransmissionandgenerationresourcesinthenearterm.Giventhehighloadfactorsassociatedwiththesetypesofcustomers,thisscenariowouldlikelyshowtheneedforadditionalbaseloadandintermediateresources.

FullCoalRetirementCase

AsorderedbytheACCinthe2012IRP,TEPgeneratedascenariocalled“FullCoalRetirementCase”.Thiscasewasstudiedinthe2014IRPinanticipationofpotentialalternativeoutcomesresultingfromEPARegionalHazemandates.Forthe2016preliminaryIRP,TEPwillmodelasimilarscenariothatreplaces100%orapproximately1,500MWofTEP’sexistingcoalcapacitywithnewresourcesby2031.

Page 81: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐81

Fuel, Market and Demand Risk Analysis  

Forthe2017FinalIRP,TEPplanstodevelopedexplicitmarketriskanalyticsforeachcandidateportfoliothroughtheuseofcomputersimulationanalysisusingAuroraXMP16.Specificallyastochasticbaseddispatchsimulationwillbeusedtodevelopaviewonfuturetrendsrelatedtofuelprices17,wholesalemarketprices,andretaildemand.Theresultsofthismodelingwillthenbeemployedtoquantifytheriskuncertaintyandevaluatethecostperformanceofeachportfolio.Thistypeofanalysisensuresthattheselectedportfolionotonlyhasthelowestexpectedcost,butisalsorobustenoughtoperformwellagainstawiderangeofpossibleloadandmarketconditions.

AspartoftheCompany’s2017resourceplan,TEPplanstoconductriskanalysisaroundthefollowingkeyvariables:

NaturalGasPrices

WholesaleMarketPrices

RetailLoadandDemand

DeliveredCoalPrices

AsummaryoftheinputdistributionsareshownforallthesevariablesonChart16throughChart19below:

   

16AURORAxmpisastochasticbaseddispatchsimulationmodelusedforresourceplanningproductioncostmodeling.AdditionalinformationaboutAURORAxmpcanbefoundathttp://epis.com/17Bothnaturalgasandcoal.

Chapter8

Page 82: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐82

NATURAL GAS & WHOLESALE MARKET PRICE SENSITIVITY 

PermianNaturalGas

Chart16showsboththeexpectedforwardmarketpricesaswellastheexpectedpricedistributionsfornaturalgassourcedfromthePermianBasin.

Chart16‐PermianBasinNaturalGasPriceDistributions

$0.00

$2.00

$4.00

$6.00

$8.00

$10.00

$12.00

$14.00

$16.00

$18.00

$20.00

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

$/m

mBtu

Mean 5th Pct 25th Pct 50th Pct 75th Pct 95th Pct

Page 83: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐83

PaloVerde(7x24)MarketPrices

Chart17showsboththeexpectedforwardwholesalemarketpricesaswellastheexpectedpricedistributionsforpowersourcedfromthePaloVerdemarket.

Chart17‐PaloVerde(7x24)MarketPriceDistributions

 

WhenconsideringChart16andChart17fromabove,itisimportanttonotethatthesummarystatisticsareaggregationsratherthanindividualpricepaths.ForinstancetheP95numberforagivenyearrepresentsthepointwhich95%ofsimulatedvaluesfallbelow.Individualpricepathsmimicrealisticbehaviorbybeingsubjecttotheprice“spikes,”meanreversion,anduneventrendobservedinactualmarkets.

 ‐

 20.00

 40.00

 60.00

 80.00

 100.00

 120.00

 140.00

 160.00

 180.00

 200.00

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

$/M

Wh

Mean 5th Pct 25th Pct 50th Pct 75th Pct 95th Pct

Page 84: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐84

LOAD GROWTH SENSITIVITY 

Chart18showsboththeexpectedretailpeakdemandaswellastheexpecteddemanddistributionsforTEP’sretailcustomers.

Chart18–TEPPeakRetailDemandDistributions

1,500

1,700

1,900

2,100

2,300

2,500

2,700

2,900

3,100

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

Peak Retail Deman

d, M

W

Mean 5th Pct 25th Pct 50th Pct 75th Pct 95th Pct

Page 85: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐85

COAL PRICE SENSITIVITY 

TEPcurrentlyhasownershipsharesinfourcoal‐firedpowerplantsinArizonaandNewMexico,mostofwhichareunderlong‐termcontractsforcoalsupply.

SanJuan:Theplantisamine‐mouthfacilitythatreceivescoalfromtheSanJuanmine.Ithasrecentlysignedashort‐termcontractthroughJuly2022.

Springerville: The plant has access to local coal from the El Segundomine in NewMexico via raildeliveries.SpringervillecanburnbothWesternsubbituminouscoalaswellascoalsourcedfromPowerRiverBasin.

Navajo:TheplantreceivescoalfromtheKayentaminewhichisadjacenttotheplant.TEPisunderalong‐termcoalsupplyagreementthrough2030.

FourCorners:TheFourCornersPowerplantissourcedfromtheNavajoCoalmine,whichismine‐mouthfacility,operatedbytheNavajoTransitionalEnergyCompany.TheFourCorners’CSArunsthrough2031.

TEPplanstomodelcoalpricesbasedoncontractidiociesandescalatorsthataredrivenbythecoalmarketoutlooktoestablishcoalpriceprojectionsfortheTEPfleet.Chart19reflectstherangeofcoalpricingbasedoncurrentassumptions.

Chart19–TEPCoalPriceDistributions

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$4.00

$4.50

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

$/m

mBtu

Mean 5th Pct 25th Pct 50th Pct 75th Pct 95th Pct

Page 86: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐86

Page 87: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

TucsonElectricPower

Page‐87

2016 – 2017 Action Plan 

InaccordancewithDecisionNo.75269,this2016PreliminaryIRPintroducesanddiscussestheissuesthatTEPmayanalyzeindetailforthe2017FinalIRP.TEPwillcontinuetodevelopafinalIRPinaccordancewiththescheduleoutlinedinDecisionNo.75269.Thescheduleincludesthefollowingmilestones,whichTEPwillmeet.

File2016PreliminaryIntegratedResourcePlan March1,2016

SubmitPreliminaryIntegratedResourcePlanUpdate October1,2016

Pre‐filingWorkshoponFinalIntegratedResourcePlan November2016

File2017FinalIntegratedResourcePlan April3,2017

Thedecisiontodeferthedeadlineforfilingafinal2017IRPwaslargelyduetotheimpactthattheCPPisanticipatedtohaveonfutureresourceplans,andthehighdegreeofuncertainlyaroundhowtheCPPwillbeimplementedinthejurisdictionswheretheregulatedload‐servingentitieshavefacilities.TheEPAhasresponsibilityforpreparinganimplementationplanfortheNavajoNation18(includingNavajoandFourCorners),andEPAintendstofinalizeaFederalPlanbySeptember6,2016.MuchofthedetailregardingCPPimplementationontheNavajoNationwillbeincludedintheFederalPlan19.Asdescribedpreviously,theUSSupremeCourthasissuedastayoftheCPPpendinglitigationintheDCCircuitCourtandincludingpotentialUSSupremeCourtreview.Duringthestay,StatesarenotobligatedtobeginworkonStatePlans,andthedeadlinesforthoseplans,aswellascompliancetimelinesforaffectedunits,willneedtobeadjustediftheruleremainsinplacefollowinglitigation.ArizonaandNewMexicoarecurrentlyevaluatingifandhowtoproceedinlightofthestay.AfinalrulingontheCPPlitigationisnotexpectedpriortoJuneof2017,andmaynotbeissueduntil2018.

The2017FinalIRPwillbeduepriortothecompletionofalloftheStatePlansgoverningCPPimplementation,therefore,TEPanticipatesthatthe2017FinalIRPwillhavetoaccommodatesignificantuncertaintywithregardtoCPPimplementation.Scenariosand/orsensitivitiestoaddressthisuncertaintywillbepresentedintheOctober2016IRPUpdate,totheextenttheyhavebeenidentified.

TEPhasdevelopedashort‐termactionplanbasedontheresourcedecisionsthatmustbeimplementedinparallelwithdevelopmentofthe2017FinalIRP.Underthisactionplan,additionaldetailedstudyworkwillbeconductedtovalidatealltechnicalandfinancialassumptionspriortoanyfinalimplementationdecisions.

18IncommentsfiledonJanuary21,2016,inresponsetoEPA’sproposedFederalPlanandModelTradingRules[80FR64966],UNSEnergyonbehalfofTEPcommentedthatitisnot“necessaryorappropriate”toregulateaffectedplantsontheNavajoNation,andEPAshouldnotdoso.19IncommentsfiledonJanuary21,2016,inresponsetoEPA’sproposedFederalPlanandModelTradingRules[80FR64966],theArizonaUtilitiesGroupcommentedthatpromulgating“model”FederalPlansdoesnotrelieveEPAoftheresponsibilitytoprovideadequatepublicnoticeandcommentoftheagency’sintenttoimposeaFederalPlanonaspecificstateortribe.

Chapter9

Page 88: Tucson Electric Power 2016 Preliminary Integrated Resource Plan ...

2016PreliminaryIntegratedResourcePlan

Page‐88

TEP’sneartermactionplanincludesthefollowing:

TEPisinvolvedinlitigationwiththetwoCo‐OwnersofSpringervilleUnit1overvariousissuesregardingUnit1.TEPhascontestedallallegationsandvigorouslyadvocateditspositionsinthesematters.TheCo‐OwnershavefailedtopayanyofthecostsandexpensesrelatingtotheirshareofownershipinSpringervilleUnit1sincetheleasesendedinDecember2014.Alloftheseproceedingsareongoing,butarecurrentlystayedincidenttoasettlementagreedtobythepartiesinFebruary2016..Asaresultoftheresolutionoftheselegalmatters,TEPispreparingfortheacquisitionoftheun‐ownedportionofSpringervilleUnit1.TEP’scurrentshareofSpringervilleUnit1isavitalpieceofoursupplyportfolio.

TEPplanstocontinuewithitsutilityscalebuildoutofitscurrentrenewableenergystandardimplementationplans.TEPanticipatesthatanadditional1100MWofnewrenewablecapacitywillbein‐servicebytheendof2030raisingthetotaldistributedgenerationandutilityscalecapacityonTEP’ssystemtoapproximately1500MW.Bytheendof2016,renewableresourceswillmakeupcloseto13%ofTEP’stotalnameplategenerationcapacity.Asaresult,TEPiscurrentlyinvestingitstimeandresourcesintoanumberofresearchanddevelopmentactivitiesthatwilldeterminethefutureneedforstorageandsmartgridtechnologiestosupportthegrid,includingtwo10MWenergystorageprojectsslatedforinserviceby2018.

TEPwillcontinuetoimplementcost‐effectiveEEprogramsbasedontheArizonaEEStandard.TEPwillcloselymonitoritsenergyefficiencyprogramimplementationsandadjustitsnear‐termcapacityplansaccordingly.

Aspartofitsnear‐termportfoliostrategy,TEPwillcontinuetoutilizethewholesalemerchantmarketfortheacquisitionofshort‐termmarketbasedcapacityproducts.Inaddition,TEPwillcontinuetomonitorthewholesalemarketforotherresourcealternativessuchlong‐termpurchasedpoweragreementsandlowcostplantacquisitions.TEPwillalsomonitoritsnaturalgashedgingrequirementsasitreducesitsrelianceoncoalbasedgenerationinfavorofnaturalgasresourcesandmakerecommendationsonpotentialfuelhedgingchangesiftheybecomenecessary.

TEPplanstocommunicateanymajorchangeinitsanticipatedresourceplanwiththeACCaspartofitsongoingplanningactivities.TEPhopesthisdialogwillallowtheCommissionanopportunitytohelpshapeTEP’sfutureresourceportfoliooutcomeswhileprovidingTEPwithgreaterregulatorycertaintywithregardstofutureresourceinvestmentdecisions.