SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t...

13
1 1 SUPPORTING INFORMATION 2 Toward an Alternative Approach for Preparation of Low-Temperature Titanium Dioxide 3 Blocking Underlayer for Perovskite Solar Cells 4 5 Su Htike Aung,§ a,d,e Lichen Zhao,§ b,c Kazuteru Nonomura, a Than Zaw Oo, e Shaik M. 6 Zakeeruddin, b Nick Vlachopoulos, a, * Tamara Sloboda, f Sebastian Svanström, g Ute B. Cappel, f 7 Anders Hagfeldt, a, * and Michael Grätzel b, * 8 9 a Laboratory of Photomolecular Science, Institute of Chemical Science and Engineering, Swiss 10 Federal Institute of Technology in Lausanne (EPFL), EPFL-SB-ISIC-LSPM, Chemin des Alambics, 11 Station 6, CH-1015 Lausanne, Switzerland. [email protected], 12 [email protected]. 13 b Laboratory of Photonics and Interfaces, Institute of Chemical Science and Engineering, Swiss 14 Federal Institute of Technology in Lausanne (EPFL), EPFL-SB-ISIC-LPI, Chemin des Alambics, 15 Station 6, CH-1015 Lausanne, Switzerland. [email protected] 16 c State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of 17 Physics, Peking University, Beijing 100871, China 18 d Physics Department, Shwebo University, Shwebo 02261, Myanmar 1 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Transcript of SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t...

Page 1: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

1

1 SUPPORTING INFORMATION

2 Toward an Alternative Approach for Preparation of Low-Temperature Titanium Dioxide

3 Blocking Underlayer for Perovskite Solar Cells

4

5 Su Htike Aung,§a,d,e Lichen Zhao,§b,c Kazuteru Nonomura,a Than Zaw Oo,e Shaik M.

6 Zakeeruddin,b Nick Vlachopoulos,a,* Tamara Sloboda,f Sebastian Svanström,g Ute B. Cappel,f

7 Anders Hagfeldt,a,* and Michael Grätzelb,*

8

9 aLaboratory of Photomolecular Science, Institute of Chemical Science and Engineering, Swiss

10 Federal Institute of Technology in Lausanne (EPFL), EPFL-SB-ISIC-LSPM, Chemin des Alambics,

11 Station 6, CH-1015 Lausanne, Switzerland. [email protected],

12 [email protected].

13 bLaboratory of Photonics and Interfaces, Institute of Chemical Science and Engineering, Swiss

14 Federal Institute of Technology in Lausanne (EPFL), EPFL-SB-ISIC-LPI, Chemin des Alambics,

15 Station 6, CH-1015 Lausanne, Switzerland. [email protected]

16 cState Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of

17 Physics, Peking University, Beijing 100871, China

18 dPhysics Department, Shwebo University, Shwebo 02261, Myanmar

1

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2019

Page 2: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

2

19 eMaterials Research Laboratory, Department of Physics, University of Mandalay, Mandalay

20 05032, Myanmar

21 fDivision of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of

22 Technology, SE-100 44 Stockholm, Sweden

23 gDivision of Molecular and Condensed Matter Physics, Department of Physics and Astronomy,

24 Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

25

26 §Su Htike Aung and Lichen Zhao contributed equally to this work.

2

Page 3: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

3

28

29 SI-1. Photoelectron spectroscopy of underlayers30

31

32 Fig. S1. Overview photoelectron spectra of TiO2 underlayers compared to an FTO reference 33 measured with a photon energy of 2100 eV. Inset: zoom on the spectral region where Cl 2p 34 should be observed. No Cl is seen for UL samples confirming that no Cl from the precursors 35 remains in the layers.

36

3

Page 4: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

4

38 SI-2. UV-VIS Spectra of underlayers

39

40

400 500 600 700

0.00

0.02

Abs

orba

nce

Wavelength (nm)

AS-ED-UL ED-UL@150 ED-UL@450

41 Fig. S2. UV-Vis absorption spectra of Ti (IV) oxo polymer immediately after electrodeposition 42 (black), after sintering at 150 oC for 5 hours (red) and after sintering at 450 oC for half an hour 43 (blue). The interference pattern is attributed to the FTO glass support.

44

4

Page 5: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

5

46 SI-3. Statistical data of mesoscopic solar cell performance measurements.47

Samples T(˚C)

N VOC (V) JSC

(mA cm-2)FF PCE (%)

SP-UL 450 30 1.069±0.037(1.117)

23.5±0.5(24.2)

0.75±0.02(0.78)

19.0±1.0(20.9)

ED-UL 450 30 1.067±0.0130(1.121)

23.4±0.4(24.1)

0.76±0.01(0.78)

19.0±0.7(20.5)

4849 Electrodeposition time 1000s and electrodeposited underlayer sintering temperature 450 ˚C 50 during 30min for all data. Best performance data in parenthesis.5152 VOC open-circuit photovoltage53 JSC short-circuit current density54 FF fill factor55 PCE (%) solar to electricity efficiency56 T: sintering temperature57 tdep: electrodeposition time58 N: number of samples59 BEST data for cells with best performance60 AV average61 SD standard deviation62

5

Page 6: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

6

64 SI-4. Incident photon-to-current conversion efficiency measurements: experimental 65 conditions6667 Incident photon-to-current conversion efficiency (IPCE) measurements were performed with a 68 setup including a Xenon light source (spectral products AB-XE-175), a monochromator (Spectral 69 Products CM110), and a Keithly 2700 multimeter. The light intensity was calibrated with a 70 certified reference solar cell (Fraunhofer ISE).71

6

Page 7: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

7

73 SI-5. Comparison of mesoporous solar cell short-circuit photocurrents and photocurrents 74 obtained by integration of the IPCE spectrum.7576 Integrated current table and solar cell performance. These solar cells are different than the 77 ones included in the main text.78

Sample P(mWcm-2)

JSC (mAcm-2) (device)

JIPCE(1)

(mAcm-2) integrated from IPCE spectrumfor AM 1.5G irradiance100 mWcm-2

JIPCE(2) (mAcm-2) integrated from IPCE spectrumfor P

JIPCE(2)/ JSC VOC (V)

FF PCE (%)

SP-UL 100.6 24.0 23.2 23.4 0.97 1.113 0.74 19.7

ED-UL 100.4 23.7 23.4 23.5 0.99 1.124 0.74 19.7

79

80 Electrodeposited underlayer, sintering temperature 450 ˚C during 30min81 SP-UL underlayer generated by spray pyrolysis82 ED-UL underlayer generated by electrodeposition83 P irradiance84 VOC open-circuit photovoltage85 JSC short-circuit current density86 JIPCE integrated photocurrent density87 FF fill factor88 PCE (%) solar to electricity efficiency89

7

Page 8: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

8

919293 Fig. S5. IPCE spectrum and integrated photocurrent vs. wavelength94

8

Page 9: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

9

96 SI-6. Hysteresis data9798 Measurements were performed on cells different than these described in the main text.99

100 Hysteresis behaviors of devices with SP-ULs, ED-ULs @450C under 100% sun. Note. ED-UL( A) 101 refers prepared at room temperature and heated @450C (30 mins).

Voc(V) Jsc(mA/cm2) FF PCE (PCE)Δ

SP-UL-01

BW

FW

1.075

1.065

23.4

23.2

0.74

0.68

18.9

17.11.8

SP-UL-02 BW

FW

1.074

1.061

23.3

23.4

0.74

0.68

18.9

16.92.0

SP-UL-03 BW

FW

1.073

1.062

23.3

23.5

0.75

0.66

19.0

16.72.3

ED-UL-01 BW

FW

1.069

1.062

23.4

23.4

0.74

0.65

18.8

16.32.5

ED-UL-02 BW

FW

1.070

1.061

23.4

23.4

0.74

0.65

18.8

16.32.5

ED-UL-03 BW

FW FS

1.058

1.058

23.6

23.5

0.73

0.61

18.5

15.3 3.2

102103 BW: Reverse direction scan, from open-circuit to short-circuit104 FW: Forward scan, from short-circuit to open-circuit105

9

Page 10: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

10

107

108

0.0 0.2 0.4 0.6 0.8 1.0 1.20

5

10

15

20

25

ph

otcu

rrent

den

sity

(mA

-cm

-2)

cell potential (V)

SP-UL/BW SP-UL/FW

17.1%18.9%BW

FW

109

110 Fig. S6. Hysteresis behavior of SP-UL based mesoscopic -perovskite solar cells

111 Cell No SP-UL-03. BW: backward scan, from open-circuit to 0V. FW: forward scan, from 0V to 112 open circuit.

10

Page 11: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

11

113

0.0 0.2 0.4 0.6 0.8 1.0 1.20

5

10

15

20

25

cu

rrent

den

sity

(mA

cm-2)

cell potential (V)

ED-UL/BW ED-UL/FW

16.3%FW

18.8%BW

114 Fig. S7. Hysteresis behavior of ED-UL based mesoscopic-perovskite solar cell

115 Cell No ED-UL-01. BW: backward scan, from open-circuit to 0V. FW: forward scan, from oV to 116 open circuit.

117118

11

Page 12: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

12

120 SI-7. Effect of electrochemical underlayer sintering time in the range 500s-1500s on the 121 mesoscopic cell performance.122

Sample tdep(s) N Voc (V) Jsc( mAcm-2) FF PCE(%)

SP-UL 3 1.109±0.008

(1.115)

23.8±0.1

(24.0)

0.75±0.00

(0.75)

19.6±0.2

(19.8)

ED-UL 500 3 1.068±0.003

(1.070)

23.7±0.1

(23.8)

0.70±0.02

(0.72)

17.6±0.4

(18.0)

ED-UL 800 3 1.111±0.003

(1.116)

23.6± 0.0

(23.6)

0.72± 0.00

(0.73)

18.7± 0.1

(18.7)

ED-UL 1000 5 1.116±0.006

(1.124)

23.6±0.1

(23.7)

0.75±0.01

(0.76)

19.7±0.078

(19.7)

ED-UL 1200 3 1.131±0.003

(1.135)

23.6± 0.1

(23.7)

0.73± 0.003

(0.74)

19.4± 0.1

(19.5)

ED-UL 1500 3 1.128±0.003

(1.133)

23.8± 0.1

(23.9)

0.73± 0.00

(0.74)

19.4± 0.1

(19.6)

123124 Best performance data in parenthesis.125

12

Page 13: SUPPORTING INFORMATION 3 Blocking Underlayer for Perovskite … · 2019-04-10 · e n t d e n s i t y (m A-c m-2) c e ll p o t e n t ia l ( V ) S P - U L / B W S P - U L / F W 1 7

13

127 SI-8 Statistical data on planar perovskite cells.128

Sample SinteringTemp. (oC)

N Voc (V) Jsc( mAcm-2) FF PCE(%)

SP-UL 10 1.059±0.036

(1.034)

19.2±2.7

(23.0)

0.68±0.04

(0.69)

15.9±1.2

(17.4)

ED-UL 150 10 1.040±0.060

(1.034)

19.2±2.7

(23.0)

0.56±0.11

(0.59)

11.5±2.8

(14.1)

ED-UL 450 10 1.059±0.036

(1.079)

21.9± 1.9

(23.5)

0.68± 0.04

(0.69)

15.9± 1.2

(17.4)

129130 Best performance data in parenthesis.131132133134

13