Seminario 20 April - Carnegie Mellon...

51
20th April 2011 20th April 2011 Mariano Martín Assistant professor University of Salamanca (Spain) (Spain) Advisor Prof. Ignacio E. Grossmann 1

Transcript of Seminario 20 April - Carnegie Mellon...

20th April 201120th April 2011

Mariano Martín Assistant professor

University of Salamanca(Spain)(Spain)

AdvisorProf. Ignacio E. Grossmann

1

Overview

IntroductionEnergy in the worldBiofuels: Raw materials  and Processes

Approach to process synthesisMethod

i e Bioethanol from corn (1st generation)i.e. Bioethanol from corn (1st generation)Results

Swichgrass as raw materialBioethanol from switchgrass (2nd generation)

Via hydrolysisVia gasification

Hydrogen from switchgrassFT diesel from switchgrassFT diesel from switchgrass

BiodieselFrom algae

2

From cooking oil 

Conclusions

Introduction

Energy in the world: Contribution of renewables[1]

3[1] BP annual report 2010

Introduction

Energy in the world: Contribution of renewables

4[1] BP annual report 2010

Introduction

Energy in the world: Contribution of renewables

Only biomass provides a short term source of fuels for the transportation sector

5

Introduction

Current ethanol from sugar cane or corn and biodiesel from vegetable oils compete with the food market.

Governmental policies support the production of lignocellulosic based biofuels and the reuse of wastes and new sources (algae)

6

Introduction

Governmental policies support the production of 2nd generation of biofuels based on thehigh yields from crop to fuel 

50005020Ethanol Biodiesel

There is a need foroptimized productionprocesses of bioethanol, biodiesel and other fuels

3000

4000ns per acre

biodiesel and other fuelsfrom lignocellulosicmaterials and wastes

0

1000

2000

401213

585 483

1150

59506

110 140 170

Gallo

0

7

Introduction

We use mathematicalprogramming techniques toaccomplish the synthesis ofthe production of:

bioethanol, FT‐diesel andhydrogen, from Switchgrass,

biodiesel from cooking oilor algae oil.

8

Introduction

The main concerns in biofuel industry are

energyand water consumption [2,3,4]. 

[2] Grossmann, I.E., Martin, M.  (2010) Chinese J. Chem. Eng, 18 (6) 914‐922[3] Ahmetovic, E.; Martín, M.; Grossmann, I.E. (2010) Ind. Eng. Chem Res.  49 (17) 7972‐ 7982[4] Martín, M.; Ahmetovic, E.;  Grossmann, I.E. (2010) I&ECR doi: 10.1021/ie101175p

9

Introduction

The main concern in biofuels industry is the energy efficiency of the biofuel.

C th l d d t t b d d th th itCorn ethanol was deemed to consume more energy to be produced than the one itcould generate,  [2]

Energy consumption optimization is quite straightforward due to the high cost of energy

10

gy

[2] Grossmann, I.E., Martin, M.  (2010) Chinese J. Chem. Eng, 18 (6) 914‐922

Introduction

Water consumption has become a major concern in process industry due to theincrease in the demand as a result of the growth of population and developmentaround the world [5,6]

Two‐thirds of the world population will face water stress by year 2025

IrrigationProcess

11[5] Elcock, D. (2008) Baseline and Projected Water Demand Data for Energy and competing Water Use Sectors, ANL/EVS/TM/08‐8 [6] Chiu, Yi‐Wen,  Walseth, B.,  Suh, S. (2009) Environ. Sci. Technol., 43 (8), pp 2688–2692 

Introduction

Water consumption in corn ethanol plants [7]:From 3 to 15 gal water/gal ethanolTh b t ibl l 2 85 l t / l th lThe best possible value 2.85 gal water/gal ethanol Mean industrial value 3.4 gal water/gal ethanol    

If we use lignocellulosic raw materials [7]If we use lignocellulosic raw materials  [7]  6 to 9.8 galwater/gal ethanol for switchgrass1.94‐2 galwater/gal ethanol for hybrid poplar

Biodiesel production requires [8]1 to 3 galwater/gal biodiesel

The low price of water makes it difficult to take into account in a cost function

12[7] Wu et al (2009) Argone national lab[8] Pate et al 2007 Report SAND 2007‐1349C

Method

We propose a two stage method [2] for the optimization of both:

1.‐Energy optimization: Superstructure and parameter optimizationincluding economic evaluation to select the flowsheet out of a large numberof alternatives and the main operating conditions

2.‐Water optimization:We design the optimal water network [3,4].2. Water optimization:We design the optimal water network [3,4].

[2] Grossmann, I.E., Martin, M.  (2010) Chinese J. Chem. Eng, 18 (6) 914‐922[3] Ahmetovic, E.; Martín, M.; Grossmann, I.E. (2010) Ind. Eng. Chem Res.  49 (17) 7972‐ 7982[4] Martín, M.; Ahmetovic, E.;  Grossmann, I.E. (2010) I&ECR doi: 10.1021/ie101175p

13

Method

Corn based ethanol

1. Energy OptimizationStructural(Multieffect columns)HEN

14[9] Karuppiah et al 2008 AIChE J. 54, 1499‐1525

Method

15[9] Karuppiah et al 2008 AIChE J. 54, 1499‐1525

Method

16[9] Karuppiah et al 2008 AIChE J. 54, 1499‐1525

Method

a‐ Superstrucure  opt.b‐Supers + HENb‐Supers. + HENc‐ Supers. + HEN + Mult. d‐ Supers. + HEN + Mult (opt. reflux ratio)

17[9] Karuppiah et al 2008 AIChE J. 54, 1499‐1525

Results

Water network

Freshwater

Process Unit

Demand Unit

Sources

Treatment Unit Discharge

18[3] Ahmetovic, E.; Martín, M.; Grossmann, I.E. (2010) Ind. Eng. Chem Res.  49 (17) 7972‐ 7982

Results

Water network

Treatment Units

Organics removal Salt removalSolids removal

19[4] Martín, M.; Ahmetovic, E.; Grossmann, I.E. (2010) Ind. Eng. Chem Res DOI: doi: 10.1021/ie101175p

Results

Industrial  Averagea‐ Superstrucure  opt.b‐Supers. + HENc Supers + HEN + Mult3 5

4

4.5

EtOH)

Industrial Goal

c‐ Supers. + HEN + Mult. d‐ Supers. + HEN + Mult (opt. reflux ratio)

2

2.5

3

3.5

tion(gal W

ater/gal 

Industrial  Goal

0

0.5

1

1.5

Water

consum

pt

0

a b c d

Fresh Water Discharge 

20[3] Ahmetovic, E.; Martín, M.; Grossmann, I.E. (2010) Ind. Eng. Chem Res.  49 (17) 7972‐ 7982

Results

Switchgrass as raw materialg

21

Results

Hydrolysis and Fermentation

Ethanol from hydrolysis of Switchgrass

AFEX

Dil t id

Rectification

Dilute acid

Adsorption

Molecular sieves

22

Pervaporation

[12] Martín, M., Grossmann, I.E. Energy optimization of lignocellulosic bioethanol production via Hydrolysis submitted  AICHE

Results

Only thermal energy

Ethanol from hydrolysis of Switchgrass

23[12] Martín, M., Grossmann, I.E. Energy optimization of lignocellulosic bioethanol production via Hydrolysis submitted  AICHE

Energy consumption Energy cons. Burning ligning Cooling

Results

Ethanol from hydrolysis of Switchgrass

24[12] Martín, M., Grossmann, I.E. Energy optimization of lignocellulosic bioethanol production via Hydrolysis submitted  AICHE

Results

Optimal flowsheet for the production of ethanol from hydrolysis of Switchgrass

25$0.8/gal,  $161MM   

[12] Martín, M., Grossmann, I.E. Energy optimization of lignocellulosic bioethanol production via Hydrolysis submitted  AICHE

Results

Ethanol via gasification of SwitchgrassGasification Reforming Clean up CO/H2  Adj.

Sour gases removal

Fermentation

Catalysis

26[10] Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Results

Superstructure Problem

Low P. Indirect Gasifier High P. Direct Gasifier

Partial Steam Partialid ti

Steam reformingoxidation reforming oxidation reforming

Catalysis Fermentation Catalysis Fermentation Catalysis Fermentation Catalysis Fermentation Subproblem

(A) (B) (C) (D) (E) (F) (G) (H)

Decomposition of GDP in 8 subproblems Decision levels: Gasifier

Reforming modeReforming modeReaction of Syn Gas

27

Optimization of : Syngas composition adjustmentSour gases removalEthanol purification removal

Results

Optimal flowsheet for the production of ethanol via gasification of Switchgrass

H2

Major saving due to income from excess of H2

28$0.41/gal,  $335MM   

[10] Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

j g

Results

G ifi

Water network

Ethanol via gasification of Switchgrass

Gasifier

Washing Solids removal

Freshwater

Wastewater Organics removal

29[4] Martín, M.; Ahmetovic, E.; Grossmann, I.E. (2011) Ind. Eng. Chem Res DOI: doi: 10.1021/ie101175p

Results

Energy consumption: Bioethanol

30[10] Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Results

Water consumption: Bioethanol

31[4] Martín, M.; Ahmetovic, E.; Grossmann, I.E. (2011) Ind. Eng. Chem Res DOI: doi: 10.1021/ie101175p

Results

H d f S it hHydrogen from Switchgrass

GasificationReforming

Partial oxidation

Indirect

Partial oxidation

Steam reforming

Not only bioethanol can 

Direct

Steam reforming

be produced

32[11] Martín, M., Grossmann, I.E. doi:10.1016/j.compchemeng.2011.03.002

Results

H d f S it h

Reduced order model for WGSR

Hydrogen from Switchgrass

20.0044·T HX8,Reactor1 0.0924 ·H OtoCOCO _ shift _ conv ;

46815

Example at 155C

2 246815H OtoCO

T HX8,Reactor1

33[11] Martín, M., Grossmann, I.E. doi:10.1016/j.compchemeng.2011.03.002

Choi et al 2003. J.  Power Sources 124, 432–439

Results

H d f S it hHydrogen from Switchgrass

34[11] Martín, M., Grossmann, I.E. doi:10.1016/j.compchemeng.2011.03.002

Results

Optimal flowsheet for the production of hydrogen from Switchgrass

$0.68/kg,  $148MM   

35[11] Martín, M., Grossmann, I.E. doi:10.1016/j.compchemeng.2011.03.002

Results

FT Diesel via gasification of Switchgrass

Gasification Reforming Clean upGasification Reforming Clean up

36[13] Martín, M., Grossmann, I.E. Process optimization of FT‐ Diesel production from biomass. To be submitted

Results

HidrocrackingFT‐Reactor

FT Diesel via gasification of Switchgrass

0.8

0.9

1Selectivity Diesel

Selectivity Gasoline

Conversion

Hidrocracking

0.4

0.5

0.6

0.7

ectiv

ity/C

onve

rsio

n

0

0.1

0.2

0.3Sel

e

340 350 360 370 380 390 4000

Temperature (C)

2

0.2332* 0.633 * 1 0.0039* T _ Synthesis 273 533 co

H co

yy y

1 2(1 ) ·iiw i

Bezergianni et al. (2009) Bioresour. Technol. 100, 3036–3042

37[13] Martín, M., Grossmann, I.E. Process optimization of FT‐ Diesel production from biomass. To be submitted

(1 )iw i

Song  et al (2004) Korean J. Chem., 21, 308‐317.

Results

FT Diesel via gasification of Switchgrass

38[13] Martín, M., Grossmann, I.E. Process optimization of FT‐ Diesel production from biomass. To be submitted

Results

Optimal flowsheet for the production of FT Diesel via gasification of Switchgrass

$0.72/gal,  $212MM   

39[13] Martín, M., Grossmann, I.E. Process optimization of FT‐ Diesel production from biomass. To be submitted

Results

Biodiesel production

40

Results

Superstructure flowsheet for the production of biodiesel

41[14] Martín, M., Grossmann, I.E. Process optimization of biodiesel production from cooking oil and Algae. To be submitted

Results

Production of biodiesel from algae

Traditional recovery of algae

Extraction

New design

42[14] Martín, M., Grossmann, I.E. Process optimization of biodiesel production from cooking oil and Algae. To be submitted

Results

Optimal flowsheet for the production of oil from algae

$0.17/kg$92MM

43[14] Martín, M., Grossmann, I.E. Process optimization of biodiesel production from cooking oil and Algae. To be submitted

Results

Production of biodiesel

1.‐Structural decisions to make. Process technologies

2.‐Reactor operating conditions to optimize bioDiesel production

3.‐Recycle of excess of methanol

Simultaneous optimization and heat integration of the process

44

Simultaneous optimization and heat integration of the process

[14] Martín, M., Grossmann, I.E. Process optimization of biodiesel production from cooking oil and Algae. To be submitted

Results

Production of biodiesel

2

yield (79.444523 1.59614107*T 'HX24', 'Reactor5' 3.12722176*ratio _ met 1.14234895*Cat

0.01193003* T 'HX24', 'Reactor5' 0.75330856* T 'HX24', 'Reactor5' *Cat

0.40574243* T 'HX24', 'Reactor5' *ratio _ met 0

2

2

.175788313*Cat 6.56010529*Cat *ratio _ met

0.02509877*ratio _ met );

Catarci & Kerpen (1999) Trans. ASAE, 42 (5), 1203‐1210 Kulkarni & Dalai (2006). Ind. Eng. Chem. Res. 2006, 45, 2901‐2913

45

( ) g , ,

[14] Martín, M., Grossmann, I.E. Process optimization of biodiesel production from cooking oil and Algae. To be submitted

Results

Production of biodiesel

$0.70/gal$17MM

$0.47/gal$102MM

46[14] Martín, M., Grossmann, I.E. Process optimization of biodiesel production from cooking oil and Algae. To be submitted

Summary of Results

[10] Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544[11] Martín, M., Grossmann, I.E. Comp. Chem. Eng. doi:10.1016/j.compchemeng.2011.03.002[12] Martín, M., Grossmann, I.E. Energy optimization of lignocellulosic bioethanol production via Hydrolysis submitted  AICHE[13] Martín, M., Grossmann, I.E. Process optimization of FT‐ Diesel production from biomass. To be submitted[14] Martín, M., Grossmann, I.E. Process optimization of biodiesel production from cooking oil and Algae. To be submitted

47

Conclusions

‐‐Biomass and waste are promising raw material for biofuels.

‐‐The range of biofuels is broad: hydrogen, bioethanol, biodiesel, green gasoline and diesel, biomethanol….

‐‐Mathematical programming techniques offer a powerful tool to synthesize bioprocesses to make them economically attractive and environmentally friendly.

‐‐It is feasible to produce second generation of biofuels but p gfurther development is required in purification and reaction technologies to increase water recycle and reuse and increase the yield of the processesthe yield of the processes.

48

Acknowledgements

Prof. Grossmann Muchas gracias Dr.  Ricardo LimaD R k K i hDr. Ramkumar KaruppiahDr. Víctor ZavalaDr? Sebastián TerrazasDr? Juan RuizDr? Juan RuizRosanna FrancoRodrigo López‐NegreteLin Lin YangLin Lin YangVijay GuptaRavi KarmathSumit MitraMarjtin Van ElzakkerMarcelo EscobarProf. Elvis AhmetovicProf. KravanjaLidija CucekMabel 49

University of Salamanca

from 1218

Where is the frog?

50

Just a hint.

For the rest, you have to vist Salamanca