Seismic fluid-structure interaction in advanced reactors Seismic Fluid-Structure... · Seismic...

23
Seismic fluid-structure interaction in advanced reactors Chingching Yu, Faizan Mir, Andrew Whittaker University at Buffalo Michael Cohen TerraPower Justin Coleman Idaho National Laboratory Philippe Bardet George Washington University

Transcript of Seismic fluid-structure interaction in advanced reactors Seismic Fluid-Structure... · Seismic...

Seismicfluid-structureinteractioninadvancedreactors

ChingchingYu,FaizanMir,AndrewWhittakerUniversityatBuffalo

MichaelCohenTerraPower

JustinColemanIdahoNationalLaboratory

PhilippeBardetGeorgeWashingtonUniversity

Outline

•  Introduction• SeismicFSImodels• Response-historyanalysisoftestspecimen• Futurework• Summaryandconclusions

DOENPHMeeting;October23and24,2018

Introduction

•  Liquidmetalreactors•  Liquidmetalsasthefluid•  Verifiedandvalidatednumericalmodels

Gluekler(1997)

DOENPHMeeting;October23and24,2018

Load-cell

Supporting frame

Reactor vessel

Earthquake simulator

Load cell

Supporting frame

Test vessel

Introduction

• Numericalmodelsofliquidmetalreactors•  Three-directionalseismicmotions•  VerifiedusinganalyticalsolutionsofFSIresponse•  Tobevalidatedusingdatafromearthquakesimulatortestsona1/10scalemodelinQ1andQ22019

2 m

1.6 m

269ft.

381ft.

269ft.

381ft.

82 m 116 m

Node 1

Node 1

RC containment

RV support

1/10scalemodelofreactorvessel

Nuclearbuildingandreactorvessel

1.SolversinLS-DYNA(2017)

ALEmodel ICFDmodel

Eulerianfluiddomain

AdaptedLagrangianfluidmesh

Numericalmodels,reactorvessel

• Arbitrary-Lagrangian-Eulerian(ALE)formulation1

•  Incompressiblecomputationalfluiddynamics(ICFD)formulation1

DOENPHMeeting;October23and24,2018

Analyticalsolutions

• Base-supportedtank•  Jacobsen(1949),Housner(1957),ChalhoubandKelly(1988),Veletsos(1984),etc.

• Head-supportedtank(reactorvessel)•  MethodofanalysismodifiedfromVeletsos(1984)

Base-supportedtank Head-supportedtank

Analyticalsolutions

•  Impulsive:fluidaccelerateswithcontainingtank•  Fluidboundarymoveswiththewalloftank•  Pressureontheoriginalfreesurfaceiszero

• Convective:fluidisfreetoslosh•  Pressuregeneratedbythefluidwaveisconsidered

Convective

Impulsive

Orig.freesurface

DOENPHMeeting;October23and24,2018

Basesupported,ICFDverification

•  Input:a(t)=a0sin(2πft)inX-direction•  a0=0.1g,f=20Hz,duration=0.5sec

• Output:max.pressureonthewalloftank•  Rigidtank:peakpressure•  Flexibletank:peakpressureinsteady-state

1.6m

2m

Fluidheightof0.6m Fluidheightof1.2m Fluidheightof1.8m

Thickness:5mm

Basesupported,ICFDverification

• Rigidtank•  ICFD:solidlines•  Analyticalsolution(Veletsos1984):dashedlines

Basesupported,ICFDverification

•  Flexibletank•  Veletsossolutionextendedto8modes

Fluidheightof0.6m Fluidheightof1.8m

Basesupported,ICFDverification

•  Flexibletank•  Veletsossolutionextendedto8modesFluidheightof0.6m Fluidheightof1.8m

ICFD ALE

Headsupported,ICFDverification

•  FlexibletankFluidheightof0.6m Fluidheightof1.8m

FSImodels,internalcomponents

•  Testspecimen:aluminumpipes•  1large(D:302mm,L:1.4m):upperinternalstructure•  6medium(D:165mm,L:1.1m):primarysodiumpump•  4small(D:535mm,L:0.8m):directheatexchanger

SideviewTopview

Internalcomponentsandfluid

Waterbetweentwopipes

Internals,ICFDverification

• AnalyticalsolutionfromChungandChen(1977)•  Twoconcentricpipeswithwaterinbetween1.Uncoupled:flexibleouter+rigidinner2.Uncoupled:rigidouter+flexibleinner3.Coupled:flexibleouter+flexibleinner

Modalfrequency

(Hz)

Case1 Case2 Case3

outer inner in-phase1 out-of-phase1

Analytical 61 40 87 36

ICFD 63 43 87 38

1.Coupledvibrationoftheinnerandouterpipesin-phase out-of-phase

RHAoftestarticle

•  Inputgroundmotiontimeseries•  ResponsesatRVsupport,X,Y,andZ-directions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.2m

WithcentralinternalWithoutcentralinternal

Fluiddepth(mm) Fluiddepth(mm)

10

RHAoftestarticle

WithcentralinternalWithoutcentralinternal

Pressure(mN/mm2) Pressure(mN/mm2)

•  Inputgroundmotiontimeseries•  ResponsesatRVsupport,X,Y,andZ-directions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.2m

10

RHAoftestarticle

• Centralinternal•  Insignificantchangetopressureontankwall

• Designandqualificationofinternals

+x-x

w/ internal, +x w/ internal, -x

w/o internal, +x w/o internal, -x

t=4sec

RHAoftestarticle

•  Inputgroundmotiontimeseries•  ResponsesatRVsupport,X,Y,andZ-directions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.8m

10

+x

+xaxis+xaxis

RHAoftestarticle

•  Inputgroundmotiontimeseries•  4setsthree-componentmotions•  Amplitude=2g•  Timescale=1/

• Originalfluidheight=1.8m

10

Upper250mmofthevessel Lower350mmofthevessel

VMstress(kPa)

Futurework

•  Earthquakesimulatortests•  1/10scalemodelofaprototype,waterasfluid•  Includescentralandoff-centerinternalcomponents•  Three-directionalseismicinputs:DBEandBDBE•  Characterizebenefitsofseismicisolation

Unit:mmUnit:mm

Summaryandconclusions

• VerificationofICFDandALEmodelsutilizedabase-supportedtank,ahead-supportedtank,andsubmergedinternalcomponents

• AnalyticalsolutionsforseismicFSIinhead-supportedtanksdevelopedbymodifyingVeletsos(1984)forbase-supportedtanks

•  ICFDmodelusedtodesigntestarticleforearthquakesimulatortests

DOENPHMeeting;October23and24,2018

Acknowledgments

• USDepartmentofEnergy•  RobertSpears•  BryanButikofer•  AlanTrost

•  TerraPower•  CharlesGrummer

•  RyanChristensen•  JamesNikola

DOENPHMeeting;October23and24,2018

Load-cell

Supporting frame

Reactor vessel

Earthquake simulator

Load cell

Supporting frame

Test vessel