Optical Properties of Solids Lecture 1 Stefan Zollner Properties Lecture 1 Zollner.pdf · Complex...

41
Optical Properties of Solids Lecture 1 Stefan Zollner New Mexico State University, Las Cruces, NM, USA and Institute of Physics, CAS, Prague, CZR (Room 335) [email protected] or [email protected] NSF: DMR-1505172 http://ellipsometry.nmsu.edu

Transcript of Optical Properties of Solids Lecture 1 Stefan Zollner Properties Lecture 1 Zollner.pdf · Complex...

  • Optical Properties of SolidsLecture 1

    Stefan ZollnerNew Mexico State University, Las Cruces, NM, USA

    and Institute of Physics, CAS, Prague, CZR (Room 335)[email protected] or [email protected]

    NSF: DMR-1505172http://ellipsometry.nmsu.edu

    http://www.bbc.co.uk/northernireland/yourplaceandmine/images/helpabout/keyboard_250x145.jpgmailto:[email protected]:[email protected]

  • Acknowledgements

    These lectures were supported by • European Union,

    European Structural and Investment Funds (ESIF) • Czech Ministry of Education, Youth, and Sports (MEYS),

    Project IOP Research Mobility – CZ.02.2.69/0.0/0.0/0008215

    Thanks to Dr. Dejneka and his department at FZU.

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 2

  • Contributions by Czech researchers

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 3

    Jan TaucBrown University

    a-Si:H (solar cells)

    Karel KuncSorbonne (Paris)lattice dynamics

    Josef HumlicekMasaryk Uellipsometry

    Others:Frantisek Lukes, E. Schmidt (Masaryk University, Brno)Libuse Pajasova, A. Abraham, E. Antoncic, B. Velicky: Reflectance on Ge and GeO2E. Antoncic: Temperature dependence of band gaps

    Czechoslovak Journal of Physics (1952-2006, Springer online)1960 ICPS-5 Conference held in Prague

    Bedrich VelickyFZU

    Ge, excitons, KK

  • Optical Properties of Solids: Lecture 1• Introductions: Why are we here?• Lecture series overview• Spectroscopy: what is that?• Experimental spectroscopy techniques• Optical constants:

    – Complex refractive index– Complex dielectric function– Absorption coefficient, extinction coefficient– Normal-incidence reflectance

    • Solid-State Physics: What can we learn from optical properties?

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 4

  • Where is Las Cruces, NM?

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 5

  • New Mexico State UniversityNew Mexico State University

    BiographyRegensburg/StuttgartGermany

    Las Cruces, NMSince 2010

    6

    Motorola (Mesa, Tempe)Arizona, 1997-2005

    Motorola, FreescaleTexas, 2005-2007Freescale, IBM

    New York, 91-92;07-10

    6

  • New Mexico State University

    SiGe:C Metrology: How thick is my film?

    7

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0 1 2 3 4 5Depth (a.u.)

    Ge

    atom

    ic fr

    actio

    nSi cap(emitter)

    SiGe:C base

    Si substrate

    theta (seconds)-2500 -2000 -1500 -1000 -500 0 500

    Log

    Inte

    nsity

    (a.u

    .)

    2

    3

    simulationdata

    Si1-xGex alloys

    Energy (eV)0 1 2 3 4 5 6 7

    ε 2

    0

    10

    20

    30

    40

    50

    Si9.06%14.93%21.10%26.86%

    Si1-xGex alloys

    Energy (eV)0 1 2 3 4 5 6 7

    ε 1

    -20

    -10

    0

    10

    20

    30

    40

    50

    Six=9.06%x=14.93%21.10%26.86%

    High-resolution XRD

    SpectroscopicEllipsometry

    SZ, Hildreth, Liu, Zaumseil, Weidner, Tillack, J. Appl. Phys. 88, 4102 (2000)

    Si1-xGex alloys

    Si1-xGex 100 thickness measurementsNeed precise values of refractive index

    Chart2

    1.995

    2

    3

    3.75

    3.755

    HBT1

    Depth (a.u.)

    Ge atomic fraction

    0

    0.07

    0.2

    0.2

    0

    Sheet1

    depth (A)edgeR/2center blankHBT1 (a.u.)HBT1SE fit

    0

    12.7971.99539906030

    25.59324000.078510.202

    38.3936000.29940.202

    51.1873.757500.29950

    63.9833.7557510

    76.78

    89.577

    102.37

    115.17

    127.97

    140.76

    153.56

    166.36

    179.15

    191.95

    204.75

    217.54

    230.340.0150730.019738

    243.140.0250390.022393

    255.930.0103170.016514

    268.730.0269580.017159

    281.530.0188730.018568

    294.320.0366460.020069

    307.120.0480370.024303

    319.920.0720350.034608

    332.710.0952750.036296

    345.510.113340.055596

    358.310.131850.074753

    371.10.154050.093722

    383.90.173360.10943

    396.70.181810.11956

    409.490.1960.13973

    422.290.201920.16152

    435.090.200340.17817

    447.880.203830.19345

    460.680.201730.19526

    473.480.203540.19514

    486.270.196820.19175

    499.070.18260.19807

    511.870.159330.19401

    524.660.118970.19696

    537.460.0670120.18729

    550.260.0369390.17840.012898

    563.050.021490.164070.009524

    575.850.014120.133580.012981

    588.650.0179510.0984980.013412

    601.440.0531990.02513

    614.240.0304850.017102

    627.040.0316320.029739

    639.830.0197340.035396

    652.630.0188980.048201

    665.430.062724

    678.220.069877

    691.020.087592

    703.820.098341

    716.610.099737

    729.410.10657

    742.210.11499

    7550.12695

    767.80.13892

    780.60.15574

    793.390.16963

    806.190.18106

    818.990.19029

    831.780.19574

    844.580.19317

    857.380.1933

    870.170.19367

    882.970.19521

    895.770.19705

    908.560.19359

    921.360.19644

    934.160.19763

    946.950.19815

    959.750.19527

    972.550.19231

    985.340.18957

    998.140.19342

    1010.90.17796

    1023.70.15841

    1036.50.12804

    1049.30.081886

    1062.10.047244

    1074.90.027949

    0.020425

    0.015073

    0.017914

    0.011093

    0.010989

    Sheet2

    Sheet2

    000399603

    12.79712.79712.797400851

    25.59325.59325.593600994

    38.3938.3938.39750995

    51.18751.18751.187751

    63.98363.98363.983

    76.7876.7876.78

    89.57789.57789.577

    102.37102.37102.37

    115.17115.17115.17

    127.97127.97127.97

    140.76140.76140.76

    153.56153.56153.56

    166.36166.36166.36

    179.15179.15179.15

    191.95191.95191.95

    204.75204.75204.75

    217.54217.54217.54

    230.34230.34230.34

    243.14243.14243.14

    255.93255.93255.93

    268.73268.73268.73

    281.53281.53281.53

    294.32294.32294.32

    307.12307.12307.12

    319.92319.92319.92

    332.71332.71332.71

    345.51345.51345.51

    358.31358.31358.31

    371.1371.1371.1

    383.9383.9383.9

    396.7396.7396.7

    409.49409.49409.49

    422.29422.29422.29

    435.09435.09435.09

    447.88447.88447.88

    460.68460.68460.68

    473.48473.48473.48

    486.27486.27486.27

    499.07499.07499.07

    511.87511.87511.87

    524.66524.66524.66

    537.46537.46537.46

    550.26550.26550.26

    563.05563.05563.05

    575.85575.85575.85

    588.65588.65588.65

    601.44601.44601.44

    614.24614.24614.24

    627.04627.04627.04

    639.83639.83639.83

    652.63652.63652.63

    665.43665.43665.43

    678.22678.22678.22

    691.02691.02691.02

    703.82703.82703.82

    716.61716.61716.61

    729.41729.41729.41

    742.21742.21742.21

    755755755

    767.8767.8767.8

    780.6780.6780.6

    793.39793.39793.39

    806.19806.19806.19

    818.99818.99818.99

    831.78831.78831.78

    844.58844.58844.58

    857.38857.38857.38

    870.17870.17870.17

    882.97882.97882.97

    895.77895.77895.77

    908.56908.56908.56

    921.36921.36921.36

    934.16934.16934.16

    946.95946.95946.95

    959.75959.75959.75

    972.55972.55972.55

    985.34985.34985.34

    998.14998.14998.14

    1010.91010.91010.9

    1023.71023.71023.7

    1036.51036.51036.5

    1049.31049.31049.3

    1062.11062.11062.1

    1074.91074.91074.9

    0.020425

    0.015073

    0.017914

    0.011093

    0.010989

    edge

    R/2

    center blank

    HBT1

    SE fit

    Depth (A)

    Ge atomic fraction

    MB17652.1#14

    0

    0

    0.07

    0.202

    0.2

    0.202

    0.2

    0

    0

    0.015073

    0.019738

    0.025039

    0.022393

    0.010317

    0.016514

    0.026958

    0.017159

    0.018873

    0.018568

    0.036646

    0.020069

    0.048037

    0.024303

    0.072035

    0.034608

    0.095275

    0.036296

    0.11334

    0.055596

    0.13185

    0.074753

    0.15405

    0.093722

    0.17336

    0.10943

    0.18181

    0.11956

    0.196

    0.13973

    0.20192

    0.16152

    0.20034

    0.17817

    0.20383

    0.19345

    0.20173

    0.19526

    0.20354

    0.19514

    0.19682

    0.19175

    0.1826

    0.19807

    0.15933

    0.19401

    0.11897

    0.19696

    0.067012

    0.18729

    0.036939

    0.1784

    0.012898

    0.02149

    0.16407

    0.009524

    0.01412

    0.13358

    0.012981

    0.017951

    0.098498

    0.013412

    0.053199

    0.02513

    0.030485

    0.017102

    0.031632

    0.029739

    0.019734

    0.035396

    0.018898

    0.048201

    0.062724

    0.069877

    0.087592

    0.098341

    0.099737

    0.10657

    0.11499

    0.12695

    0.13892

    0.15574

    0.16963

    0.18106

    0.19029

    0.19574

    0.19317

    0.1933

    0.19367

    0.19521

    0.19705

    0.19359

    0.19644

    0.19763

    0.19815

    0.19527

    0.19231

    0.18957

    0.19342

    0.17796

    0.15841

    0.12804

    0.081886

    0.047244

    0.027949

    Sheet3

  • New Mexico State University

    Key HW accomplishments for 3G smart phones

    New Mexico State University

    1. Power amplifier: InGaP Heterojunction bipolar transistor (HBT)

    2. Low-noise amplifier:Silicon-germanium-carbon HBT

    3. New CMOS materials:Advanced substrate materials (SOI)High-k (complex metal oxide) gate dielectricsMetal gateSi-Ge-C source-drain stressors Laser annealing (>100 citations)Nickel silicide Ohmic contactsCopper interconnectsLow-k interlayer dielectrics

    4. Power, analog, passives

    32nm CMOS on SOI

    Double-poly capacitor

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 8

  • Flat, clean, & uniform films, at least 5 by 5 mm2, 190 nm to 40 µm, 10-800 Klow surface roughness, layers on single-side polished [email protected] http://ellipsometry.nmsu.edu

    Grad. Students: Nuwanjula Samarasingha, Farzin Abadizaman, Carola Emminger, Rigo CarrascoUndergraduate Students: Pablo Paradis,Cesy Zamarripa, Zachary YoderCollaborators: Jose Menendez (Arizona State), Sudeshna Chattopadhyay (IIT Indore)Samples: Arnold Kiefer (AFRL), Jim Kolodzey (Delaware), John Kouvetakis (Arizona State), Alex Demkov (UT Austin)

    mailto:[email protected]

  • Introductions: Why are we here?

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 10

  • Optical Properties of Solids: Overview1. Overview: spectroscopy, optical constants, and solid-state physics2. Crystal structures, Wyckoff positions, point and space groups,

    classification of optical vibrations3. Maxwell’s equations in vacuum, plane waves, polarized light4. Maxwell’s equations in continuous media, dielectric function, Lorentz and

    Drude model, Sellmeier, poles, Cauchy5. Analytical properties of the dielectric function, KK relations6. Application of Lorentz and Drude models to insulators and metals7. Electronic band structure, direct and indirect gap absorption8. Free electrons, effective masses in semiconductors, excitons9. Interband transitions, van Hove singularities, critical points10. Photoluminescence, Einstein coefficients, quantum confinement11. Applications: Anisotropic materials12. Applications: Thin films, stress/strain, deformation potentials

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 11

  • Optical Properties of Solids: Text Book

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 12

  • Optical Properties of Solids: Other Text Books

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 13

    Part III:Optical Properties

    M.L. Cohen & J. Chelikowsy: Electronic Structure & Optical Properties

    Tanner (U FL): notes

    C. Klingshirn: Semiconductor Optics

    Ellipsometry:FujiwaraTompkins/HilfikerFujiwara/CollinsPalik I, II, IIIAzzam/Bashara

  • Classification Schemes for Surface Spectroscopy I

    Particles: Electron (e), ion (i), or photon (γ)The term spectroscopy implies that we prepare, vary, or measure the

    energy (wavelength) and/or momentum of the primary and/or secondary particle.

    For photons, we can also measure the polarization of the primary and/or secondary photon.

    The interaction depth for thin films depends on the penetration depth of the primary particle and the escape depth of the secondary particle. (This can be nanometers to micrometers, depends on each technique.)

    primary particlee, i, γ

    secondary particlee, i, γ

    φ ψ

    surfacenormal

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 14

  • Classification Schemes for Surface Spectroscopy II

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 15

    1. Specular reflection: The angle of reflection is equal to the angle of incidence. For some spectroscopies, the angles are measured relative to the surface (XRR), for others relative to the surface normal (SE).

    2. Diffuse reflection or scattering: There is no well-defined direction, in which the secondary particle exits. The scattering probability may depend on the angles.

    3. Diffraction: Requires a periodic (crystalline) layer. There is a well-defined angular relationship between the spacing of the diffraction (Bragg) planes and the momentum of the incident/diffracted beams.

    φ ψ2

    Diffuse reflection/scattering:PL, Raman, SIMS, Auger

    φ ψ3

    Diffraction: XRD

    φ φ1

    Reflection:Ellipsometry, XRR

  • Classification Schemes for Surface Spectroscopy III

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 16

    • Elastic scattering: The energy of the incident particle equals that of the scattered particle.

    • Inelastic scattering: The two energies are different, depending on the energy gained or lost by the interaction with the thin film.

    • Both can yield information about the energy states in the film.

    EgElastic: The intensity of the reflected (relative to the refracted beam) depends on the excited states of the system (band gaps).

    Inelastic: The energy difference (gain or loss) provides information about vibrational (Raman) or electronic (Auger) energy states. The strength of the scattering process depends on the interaction with an intermediate state.Eg

    Ei

  • Classification Schemes for Surface Spectroscopy IV

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 17

    − Spectroscopic Ellipsometry: Elastic, specular, γ → γThickness, Energy (band gap), refractive index, composition

    − X-ray reflectivity: Elastic, specular, γ → γThickness, density, surface/interface roughness

    − X-ray diffraction: Elastic, diffracted, γ → γLattice constant, stress/strain, composition

    − UV Raman Spectroscopy: Inelastic, scattered, γ → γ Vibrational (phonon) energy, composition, stress/strain

    − Secondary Ion Mass Spectrometry: Inelastic, scattered, i → iComposition, depth profile (sputtering), doping

    − Auger Electron Spectrometry: Inelastic, scattered, e → eComposition, depth profile (sputtering)

    − Rutherford backscattering: Inelastic, scattered, α → αComposition, some depth information, primary standard

  • Bohr Model for the Hydrogen Atom

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 18

    Quantum Numbers:n 1,2,3,…l 0,…,n-1m −l,…,ls +/− 1/2 Relativistic corrections:s electrons (l=0) close to the core

    J=L+S total angular momentumSpin-orbit coupling L·SL=1, S=1/2 J=1/2 or 3/2

    E(n)=−R/n2R=13.6 eV

  • Bonding and Anti-Bonding Orbitals

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 19

    s: Ψ=ψ1+ψ2 s∗: Ψ=ψ1−ψ2

    px, py, pzp*

    p

    C electronic configuration: 1s2 2s2 2p2L shell forms sp3 hybrid: 1s2 2s1 2p3

  • A simple band structure for Germanium

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 20

    p

    s

    s*

    p*

    filled

    empty

    EF

    Add

    spin

    -orb

    it co

    uplin

    g: J

    =L+S

    Add

    kine

    tic e

    nerg

    ys

    s*

    j=1/2

    j=3/2

    j=1/2

    j=3/2

    ∆0

    ∆0’

    Ge electronic configuration: … 4s2 4p2N shell forms sp3 hybrid: … 4s1 4p3

    K=mv2/2=p2/2m=2k2/2m

    m: effective mass

    CB (empty)e

    so∆0

    hhlh

    4s VB

    E

    Momentum k

    EF E0 band gap

    filledfilled

  • A simple band structure for Germanium

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 21

    p

    s

    s*

    p*

    filled

    empty

    EF

    Add

    spin

    -orb

    it co

    uplin

    g: J

    =L+S

    Add

    cubi

    c sy

    mm

    etry

    s

    s*

    j=1/2

    j=3/2

    j=1/2

    j=3/2

    ∆0

    ∆0’FCC Brillouin zone

    Band structure

  • Carbon, Silicon, Germanium, Tin

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 22

    The s* band moves down, as the elements get heavier.

    In α-tin, the s* band moves into the p-band manifold, between the j=1/2 and j=3/2 states.This makes α-tin a zero-gap semiconductor.

  • Classification Schemes for Surface Spectroscopy IV

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 23

    − Spectroscopic Ellipsometry: Elastic, specular, γ → γThickness, Energy (band gap), refractive index, composition

    − X-ray reflectivity: Elastic, specular, γ → γThickness, density, surface/interface roughness

    − X-ray diffraction: Elastic, diffracted, γ → γLattice constant, stress/strain, composition

    − UV Raman Spectroscopy: Inelastic, scattered, γ → γ Vibrational (phonon) energy, composition, stress/strain

    − Secondary Ion Mass Spectrometry: Inelastic, scattered, i → iComposition, depth profile (sputtering), doping

    − Auger Electron Spectrometry: Inelastic, scattered, e → eComposition, depth profile (sputtering)

    − Rutherford backscattering: Inelastic, scattered, α → αComposition, some depth information, primary standard

  • Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 24

    Example: X-ray Photoelectron Spectroscopy: γ → e

    Quantification using RBS standardsHigh depth resolution (small escape depth of photoelectrons)

    K

    L1L2

    Vac

    BindingEnergy

    0EL2EL1

    EK

    Ekin = hω - EK - Φdet

    incident(~1.5 keV)

    γ scatterede-

    Oxidation states

  • Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 25

    Example: Auger Electron Spectroscopy: e → e

    K

    L1L2

    Vac

    e-

    ElectronImpact Ionization

    BindingEnergy

    0EL2EL1

    EK

    EAuger = (EK - EL1) - EL2

    incident(5 – 20 keV)

    scattered

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 1000 2000 3000 4000

    Ato

    mic

    Fra

    ctio

    n

    Depth (Å)

    Ge

    O

    Si

    Si

    O

    Xe+ Ion Beam70º Off Normal

    5 keV Primary e- Beam5º Off Normal

    Strained SiSiGe

    Buried Oxide (SiO2)

    Si Substrate

    Xe+ Ion Beam70º Off Normal

    5 keV Primary e- Beam5º Off Normal

    Strained SiSiGe

    Buried Oxide (SiO2)

    Si Substrate

    Quantification using RBS standardsHigh depth resolution (small escape depth of L electrons)

  • Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 26

    Fourier-Transform SpectrometerGrating Monochromator

    Constructive interference: ∆x=NλDestructive interference: ∆x=(2N+1)λ/2

    d(sinβ−sinα)=Nλ

    Diffracted intensity depends on angle and polarization.

    Common for mid-infrared spectroscopy (50-500 meV).

  • Macroscopic Optical Constants

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 27

    n: refractive index, n=c/vk: extinction coefficientn+ik: complex refractive index

    R: reflectance at normal incidence (Irefl/I0)T: transmittance (Itrans/I0)R+T+A+S=1

    α: absorption coefficientα=4πk/λ

    ε: complex dielectric functionε=ε1+iε2=(n+ik)2

    Why not n-ik?Wave goes like exp[i(kx-ωt)]

    All are connected through Maxwell’s equations (Lectures 3/4).

  • Reflection and Transmission

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 28

    Law of reflection: αin=αoutSnell’s Law: n1sinαin=n2sinαoutn: Refractive Index

    Beer’s Law: I(L)=I0exp(-αL)Also have diffuse scattering.

    Absorption coefficient α (cm-1)Consider reflection losses

    exp −𝛼𝛼𝛼𝛼 ≈𝑇𝑇

    1 − 𝑅𝑅 2

    𝑅𝑅 =𝑛𝑛 − 1𝑛𝑛 + 1

    2

  • Transmission: LSAT or (LaAlO3)0.3(SrAlTaO6)0.35

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 29

  • Reflection from a rough surface

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 30

    Debye-Waller correction:Assumes sinusoidal roughnessRrough=R0exp[-(4πσncosθ/λ)2]σ: rms surface roughness parameterD.K.G. de Boer, Phys. Rev. B 49, 5817 (1994).

    Specular Specular+Diffuse

    Also: I. Ohlidal, F. Lukes, and K. Navratil, Surf. Sci. 45, 91 (1974). 98 citations.

  • Reflectance Spectroscopy Instrumentation

    Spectroscopic Ellipsometer (VUV/UV/VIS-VASE)

    Spectroscopic Ellipsometry:• Thickness (100 to 10000 Å)

    • Absorption, band gap

    • Refractive index

    detectorMonochromator

    polarizer

    sample

    analyzerΦ

    X-ray diffraction & reflectance

    XRD/XRR:• Crystal structure• Lattice spacings (strain)• Thickness (5 Å to 1000 Å)• Surface, roughness layer

    thickness• Density

    Spectroscopic Ellipsometer(IR-VASE)

    FTIR ellipsometry:• Very thick films (> 5000 Å)

    • Phonon absorption

    • Optical Constants

    detector

    Rotating Compensator

    polarizer

    Source

    PolarizerSpectral Range 1.25 to 40 μm(250 cm-1 to 8000 cm-1)

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 31

  • Crystalline CeO2 on sapphire (liquid deposition)

    • Insulating CeO2 film on sapphire, with band gap near 3.7 eV.• Determine film thickness from interference fringes in transparent region.• Fit optical constants with basis spline polynomials.

    K. Mitchell, C.O. Rodriguez, Y. Li, 2013; X. Guo, Boston Applied Technologies, Inc.

    transparent opaque

    Fluorite (Oh5)

    dielectricfunction

    transparent

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 32

  • Thickness Measurements: InGaP HBT• How thick is my film?

    New Mexico State University

    Skyworks

    Ellipsometry Spectrum

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 33

  • X-ray Reflectance: SrTiO3 on Si

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 34

    (Å)

    LayerElectron Density

    (eÅ-3)Bulk Electron density (eÅ-3)

    Thickness(nm)

    Roughness(nm)

    SrTiO3 1.08 1.41 1.79 0.6152

    SrTiO3 1.40 1.41 15.6 0.7396

    SiO2 0.75 0.81 2.87 0.4202

    Si 0.66 0.71 Substrate 0.4574

    SiSiO2

    SrTiO3

    SrTiO3

    Q=4𝜋𝜋 sin 𝜗𝜗𝜆𝜆

    Small x-ray contrast between Si and SiO2.

    Sheet1

    LayerElectron Density (eÅ-3)Bulk Electron density (eÅ-3)Thickness(nm)Roughness(nm)

    SrTiO31.081.411.790.6152

    SrTiO31.401.4115.60.7396

    SiO20.750.812.870.4202

    Si0.660.71Substrate0.4574

  • X-ray Diffraction: SrTiO3 on Si, Ge, and SrTiO3

    ω-2θ scan (zoomed)

    22 22.5 23 23.5 24 24.5 250

    20

    40

    60

    80

    100

    120

    140

    ω-2θ (°)

    Inte

    nsity

    (cps

    )

    SrTiO3 on SiSTO (200)

    FWHM=0.27°ω=23.27°

    22 22.5 23 23.5 24 24.5 250

    10

    20

    30

    40

    50

    60

    ω-2θ (°)

    Inte

    nsity

    (cps

    )

    SrTiO3 on GeSTO (200)

    FWHM=0.29°ω=23.28°

    Grain Size = 168Å

    Grain Size = 161Å

    Vertical Strain= -0.15%

    Vertical Strain = -0.18%

    22 22.5 23 23.5 24 24.5 250

    5

    10

    15

    20

    25

    ω-2θ (°)

    Inte

    nsity

    (cps

    x10 6

    )

    SrTiO3 on SrTiO3STO (200)

    FWHM=0.02°ω=23.24°

    ω scan

    21 21.5 22 22.5 23 23.5 24 24.5 25 25.5 260

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    ω (°)

    Inte

    nsity

    (cps

    )

    SrTiO3 on SiSTO (200)

    FWHM=0.80°

    21 22 23 24 25 260

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    5500

    ω (°)

    Inte

    nsity

    (cps

    )

    SrTiO3 on Ge

    STO (200)

    FWHM=0.94°

    21 22 23 24 25 260

    5

    10

    15

    20

    25

    ω (°)

    Inte

    nsity

    (cps

    x 1

    06)

    SrTiO3 on SrTiO3STO (200)

    FWHM=0.02°

    FWHM=0.80º

    FWHM=0.94º

    FWHM=0.02º

    ω-2θ scan

    100

    101

    102

    103

    104

    Inte

    nsity

    (cps

    )

    SrTiO3 on SiSi (400)

    STO (200)

    STO (300)

    20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 4010

    2

    103

    104

    105

    106

    107

    108

    ω-2θ (°)

    Inte

    nsity

    (cps

    )

    SrTiO3 on SrTiO3STO (200)

    STO (300)

    Experimental DataModel

    F

    100

    101

    102

    103

    104

    Inte

    nsity

    (cps

    )

    SrTiO3 on GeGe (400)

    STO (200)

    STO (300)

    Bragg:2dsinθB=λ

    Scherrer:λ=FWHM*t*cosθB

  • Raleigh scattering (elastic)

    Why is the sky blue?

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 36

  • Elastic and Inelastic (Raman) Scattering

    Raleigh(elastic)

    Raman(Stokes)

    Raman(Anti-Stokes)

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 37

    CARS

  • Raman Spectroscopy

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 38

    GaPLSAT Mg2AlO4 (spinel)

  • Photoluminescence

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 39

    E0 band gap

    electron

    hole

    γ

  • Crystal Structure (Point & Space Group)

    Electrons Phonons

    Solid State Physics (crystalline)

    Defects

    Magnetism Superconductivity

    Transport

    Phase Transitions

    Surfaces Topological Insulators

    CMOS RF Power Analog

    Photovoltaics Energy Conversion

    Magnetic Storage Catalysis

    Lasers Sensors

    10-80 meV0.3-10 eVFar-IR to mid-IRNear-IR, VIS, UV

    Excitons

    Polaritons

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 40

  • Materials properties accessible by optical spectroscopy

    • Mid-infrared spectral range– Insulator/semiconductor:

    Lattice vibrations (phonons)– Metal: Free carrier properties (density, scattering rate)

    • Visible to UV range:– Electronic excitations– Band gap, interband transitions

    • Ellipsometry allows us to study semiconductors, insulators, and metals.

    • Thin films and surfaces can be investigated with proper data analysis (curve fitting).

    Stefan Zollner, February 2019, Optical Properties of Solids Lecture 1 41

    Optical Properties of Solids�Lecture 1Slide Number 2Contributions by Czech researchersOptical Properties of Solids: Lecture 1Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Introductions: Why are we here?Optical Properties of Solids: OverviewOptical Properties of Solids: Text BookOptical Properties of Solids: Other Text BooksSlide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Macroscopic Optical ConstantsReflection and TransmissionTransmission: LSAT or (LaAlO3)0.3(SrAlTaO6)0.35 Reflection from a rough surfaceSlide Number 31Crystalline CeO2 on sapphire (liquid deposition)Thickness Measurements: InGaP HBTX-ray Reflectance: SrTiO3 on SiX-ray Diffraction: SrTiO3 on Si, Ge, and SrTiO3Raleigh scattering (elastic)Elastic and Inelastic (Raman) ScatteringRaman SpectroscopyPhotoluminescenceSlide Number 40Materials properties accessible by �optical spectroscopy Backup SlidesSlide Number 43Slide Number 44Slide Number 45