Multiple Modulation and Higher Harmonics Probing Complex Properties

download Multiple Modulation and Higher Harmonics Probing Complex Properties

of 32

Transcript of Multiple Modulation and Higher Harmonics Probing Complex Properties

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    1/32

    Multiple Modulation and Higher

    Harmonics Probing Complex Properties

    (including Scanning Impedance)

    NSF: NIRT, NSEC, MRSEC

    Dawn A. Bonnell,S-H. Kim, R. Shao, D. Strachen, C. Staii,

    A. T. Johnson

    The University of Pennsylvania

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    2/32

    The Ideal Probe

    TemperatureChemical environment

    Sample stimulationdc + high frequency ac lateral modulationBack gate modulationFrequency dependenceDc + modulated magnetic fieldSingle wavelength optical

    Wavelength modulation

    Tip Modulationmechanicalelectricaloptical

    DetectionHigher order harmonicsMultiple harmonicsFrequency dependenceOptical + electricalOptical + mechanicalWavelength dependence

    Van der Waals interactions

    V1 + V2 sin(t)surface potential, SIM, NIS

    +

    ++

    +

    - - -

    - --PFM, SCM ,SSRM

    electrostatic/mag

    netic interactions

    Mechanically driven electrostatically driven

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    3/32

    140K

    10 nm

    Atomic Structure and Ferroelectric

    Polarization; BaTiO3

    Separating Atomic Lattice and

    Charge Lattice: PotassiumMolybdate

    Spin and Charge: La

    Manganates

    CH3-CO-S-Benzen-(Zn-prophyrin)3

    STM current image Height =5nm

    Diameter =2nm

    STM

    topography

    Biomolecules on Surfaces

    Functional Oxide Structure

    Not Only Structure .. Also Properties

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    4/32

    Scanning Impedance Microscopyexploiting sample perturbation and frequency dependence

    electrons trapped at an interface

    band energies in a nanotube

    Higher Harmonics

    dielectric constant of a thin film

    dielectric constant of nanowires

    density of states of nanotubes

    Higher Harmonics in Tip Scattered Optical Signaldielectric function of porphyrin

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    5/32

    ( ) ( ) ( ) ( )[ ] ( ) ( )

    ++

    = tVVVtVVVz

    zCzF acsurfdcacsurfdc cos22sin12

    1

    2

    1 22

    ( )

    ( )

    ( )

    +

    =22

    2

    1

    2

    1

    acsurfdcdc VVVz

    zC

    zF

    ( )( )

    ( ) acsurfdc

    VVVz

    zCzF

    =

    1

    ( )( ) 2

    ac2

    V4

    1

    z

    zCzF

    =

    An Oscillating Electrical Signal

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    6/32

    ( )( )

    ( ) acsurfdc

    VVVz

    zCzF

    =

    1

    ( )( ) 2

    ac2

    V4

    1

    z

    zCzF

    =

    Scanning Surface Potential Microscopy/Kelvin Force Microscopy

    Scanning Impedance Microscopy

    Gated Scanning Impedance

    An Oscillating Electrical Signal

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    7/32

    ( )( )

    ( ) acsurfdc

    VVVz

    zCzF

    =

    1

    ( )( ) 2

    ac2

    V4

    1

    z

    zCzF

    =

    An Oscillating Electrical Signal

    New Variants of SSPM/KFM and EFM

    Dielectric functionQuantum capacitance

    Density of states

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    8/32

    RdR R

    V1 V2

    V

    ( )tVVV acdctip += cos

    dclat VV =

    dctip VV =

    ( )tVVV acdclat += cos

    Scanning Impedance Microscopy: a local probeScanning Impedance Microscopy: a local probe

    0 5 10 15

    -0.4

    -0.2

    0 .0

    0 .2

    0 .4

    -0.4

    -0.2

    0 .0

    0 .2

    0 .4Amplitude,a.u.

    Phase,deg

    Dis tance, m

    Phase

    Amplitude

    ( )cacssurf tVVV ++= cos

    ( )20

    2tan

    =

    1 03

    1 04

    1 05

    1 0- 2

    1 0- 1

    1 00

    1 4 8 O h m

    5 2 0 O h m

    1 . 5 k O h m

    4 . 7 k O h m

    tan(

    gb

    )

    F r e q u e n c y , H z

    R C

    CdR R

    Rd

    1, A1 2, A2

    V

    Kalinin and Bonnell, Appl. Phys. Lett., 2001, Shao, Kalinin, Bonnell, APL 2003

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    9/32

    1000oC for 15 min in

    vacuum: details show up in

    surface steps.

    34nm

    24o

    {100}

    Grain Boundary Structure

    0 50 100 1500

    1

    2

    3

    X[nm]

    Z[nm]

    Aberration corrected STEM image of a SrTiO3

    bicrystal and calculated charge density

    0.5n

    m

    Sr

    O

    Ti

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    10/32

    34nm

    24o

    {100}

    Fine Structure at the Grain Boundary

    2nm

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    11/32

    103

    104

    105

    10-2

    10-1

    100

    148 Ohm

    520 Ohm

    1.5 kOhm

    4.7 kOhm

    tan(

    gb

    )

    Frequency, Hz

    R

    C

    Temperature Dependent SIM Identifies an Interface Induced Ferroelectric

    Phase Transition in SrTiO3

    Shao, Duscher, Chisholm, Bonnell, PRL (2005)

    Scanning surface potentiometry

    50 1001502002503003500.0

    3.0x104

    6.0x104

    9.0x104

    1.2x105

    1.5x1051.8x10

    5

    R,

    T,K

    50 100 150 200 250 3006

    9

    12

    C-1,m

    2/F

    T, K

    Curie-Weiss Law: Cgb TTC 1 and TC=40K

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    12/32

    Direct Imaging of the Boundary PotentialDirect Imaging of the Boundary Potential

    2 0 0 n m

    0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0- 1 0 0

    -5 0

    0

    5 0

    1 0 0

    SurfacePotentia

    l,mV

    La te ra l d is tance ,nm

    V120mV

    VGB-40mV

    0 200 400 600 800 1000

    -8 0

    -4 0

    0

    40

    80

    Lateral d istance,nm

    SurfacePot

    ential,mV

    200nm

    VGB-100mV

    0 500 1000-80

    -40

    0

    40

    Surface

    Potential,m

    V

    Lateral distance,nm

    30K98K

    293K

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    13/32Shao, Duscher, Chisholm, Bonnell, PRL (2005)

    Temperature Dependent Transport Reveals Collapse of theTemperature Dependent Transport Reveals Collapse of the

    Interface Potential Barrier in SrTiOInterface Potential Barrier in SrTiO33

    0 50 100 150 200 250 300

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    RGrain

    (m2)

    RGB

    (

    m2)

    24o

    36.8o

    T(K)

    grain

    0 500 1000

    -80

    -40

    0

    40

    Surface

    Potential,mV

    Lateral distance,nm

    30K98K

    293K

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    14/32

    Field Induced Dipole Alignment

    Boundary charge=0.06C/m2

    That is 0.3 electron/unit cell

    That is 0.8 electrons/Ti unit

    Interface charge determined from first principles calculations aInterface charge determined from first principles calculations and transportnd transport

    measurements are in good agreementmeasurements are in good agreement

    0.5nm

    Sr

    O

    Ti

    Aberration corrected Z

    contrast TEM

    DFT calculations

    Shao, Duscher, Chisholm, Bonnell, PRL (2005)

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    15/32

    Shao, Duscher, Chisholm, Bonnell, PRL (2005)

    Temperature Dependent Transport Reveals Collapse of theTemperature Dependent Transport Reveals Collapse of the

    Interface Potential Barrier in SrTiOInterface Potential Barrier in SrTiO33

    0 50 100 150 200 250 300

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    RGrain

    (m2)

    RGB

    (

    m2)

    24o

    36.8o

    T(K)

    grain

    0 500 1000

    -80

    -40

    0

    40

    Surface

    Potential,mV

    Lateral distance,nm

    30K98K

    293K

    I t f h d t i d f fi t i i l l l tiI t f h d t i d f fi t i i l l l ti d t td t t

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    16/32

    Field Induced Dipole Alignment

    Boundary charge=0.06C/m2

    That is 0.3 electron/unit cell

    That is 0.8 electrons/Ti unit

    Interface charge determined from first principles calculations aInterface charge determined from first principles calculations and transportnd transport

    measurements are in good agreementmeasurements are in good agreement

    0.5nm

    Sr

    O

    Ti

    Aberration corrected Z

    contrast TEM

    DFT calculations

    Shao, Duscher, Chisholm, Bonnell, PRL (2005)

    Nanoimpedance Spectroscopy

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    17/32

    Detecto

    r

    Tip

    Laser AFM

    Controller

    Impedance

    AnalyzerHP4294A

    Z(), ()

    Topo

    Nanoimpedance Spectroscopy

    Single-terminal measurements

    Two-terminal measurements

    -Zim

    -ZreR1+R2R1

    ( ) 111

    CR

    ( ) 122

    CR

    Shao, et al, APL 2003

    ieZZ =

    0 100 200 300 400

    0

    50

    100

    150

    200

    -Z

    im(k

    )

    Zre(k )

    (c)

    12

    3

    |Z|

    (c)

    12

    3

    |Z|

    14M

    19M

    (e)

    12

    3

    (e)

    12

    3

    -

    90o

    -20o

    (d)

    1

    3

    |Z|

    2

    (d)

    1

    3

    |Z|

    2

    6.1M

    18M

    (f)

    1 2

    3

    (f)

    1 2

    3

    -

    90o

    -

    10o

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    18/32

    Scanning Impedance on

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    19/32

    SamplesfromCraighead &MacDiarmidGroups

    Nikiforov, Liu, Bellan, Craighead, BonnellNano Letters 2005

    Scanning Impedance on

    Reduced Dimension Structures

    Scanning Impedance on

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    20/32

    Vi

    +

    + -

    Ev

    Ec

    EF

    Vi

    +

    + -

    Ev

    Ec

    EF

    Scanning Impedance on

    Reduced Dimension Structures

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    21/32

    Electronic Structure of Individual Defects

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    22/32

    Tip

    Tube

    Gate

    C1

    C2

    surf

    q

    tube VCCC

    C

    ++= 211

    Cq - quantum capacitance

    C1, C2 geometric capacitances

    S. Lyrui, Appl. Phys. Lett. 52, 501 (1988),

    M. Freitag, S.V. Kalinin, A.T. Johnson, D.A. Bonnell, PRL (2002)

    Onset of depletion

    itube V =

    Quantum electrostatics

    C1

    C2 Cq

    SIM Determines the Electronic Structure of Individual Defects in

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    23/32

    SGMSGM(current through the nanotube)(current through the nanotube)

    SIM amplitudeSIM amplitude(local potential amplitude)(local potential amplitude)

    Freitag, Johnson, Kalinin, Bonnell, Phys Rev Lett (2002)

    Molecular Wires and Nanotubes

    Spot diameter :1* +

    =

    R

    V

    VD

    i

    tip

    i

    33.1~_spherefree

    surfacetip

    C

    C =

    9.32=SiO

    nmR 20~radiusTip=

    where:

    Defect contrast is related to the local electronic structure

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    24/32

    SGM

    SIM

    Defect contrast is related to the local electronic structure

    Increasing tip bias

    Defect Slope [nm/V] Vi [mV] Vi* [meV]

    1 83.6 3.6 65 20

    2 39.1 0.4 139 403 26.4 1.1 206 55

    4 53.0 1.2 102 30

    M. Freitag, S.V. Kalinin, A.T. Johnson, D.A. Bonnell, PRL (2002)

    0 2 4 6 80

    100

    200

    300

    400

    500

    600 Defect 1

    Defect 2

    Defect 3

    Defect 4

    Spotdia

    meter(nm)

    Tip bias (V)

    An Oscillating Electrical Signal

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    25/32

    ( )( ) ( ) acsurfdc VVVz

    zCzF

    =1 ( )

    ( ) 2ac2 V

    4

    1

    z

    zCzF

    =

    g g

    New Variants of SSPM/KFM and EFM

    Dielectric functionQuantum capacitanceDensity of states

    Simultaneous topographic signal, 1st harmonic and 2nd harmonic detection

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    26/32

    2

    Differentialcapacitance

    Simultaneous topographic signal, 1 harmonic and 2 harmonic detectionImplemented on custom designed Omicron VT AFM/STM

    Effectively 2 lock-in signalsAdditional filters on the frequency demodulator signal

    Simultaneous imaging of topography, surface potential (1), and

    diff ti l it (2 ) f hi h k id fil (2 HfO Si)

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    27/32

    differential capacitance (2) of high-k oxide film (2nm HfO2 on Si).

    topography

    1 2

    0.002 (Df)

    topography

    1 2

    Omicron UHV VT-AFM/STM

    Low dimensional systems exhibit discontinuities in the

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    28/32

    y

    density of states

    [ ]),(2

    2

    22

    tiptotaltip

    F VzCz

    Vk

    Q

    )(zCtt

    LzC )(0

    ),(tipQ

    VzC

    EtipQDeLC

    2=

    tipV

    ED

    tipV

    *J. Heo and M. Bockrath, APL 5, 853 (2005).**D. Gekhtman et al. Physical Review Letters82, 3887 (1999).

    Combine EFM Feedback Detection with low

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    29/32

    tVVV

    tVVtVVV

    tip

    sin

    sin)()(2

    1sin)()(

    00

    22

    00000

    +=

    ++

    Lock-in

    AFM computer

    In Ref InV tsin

    )2(

    Combine EFM Feedback Detection with lowamplitude electric signal detection

    Real Time 2nd harmonic of carbon nanotubes

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    30/32

    tube

    bare substrate

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    31/32

    There is much information in the long range

  • 8/7/2019 Multiple Modulation and Higher Harmonics Probing Complex Properties

    32/32

    There is much information in the long range

    interactions; it is not simple to extract it!!

    Combining multiple modulations of tip signals and sample perturbations

    yields new information

    Scanning Impedance Microscopy

    Nano Impedance Spectroscopytrap state time constants

    dielectric anomalies

    Accessing higher harmonics with multiple signals yields complex propertiesSurface Potential vs Dielectric Constant

    polarizability !!!

    Exploiting boundary conditions related to sample configuration can yieldfundamental information.

    Quantum Capacitance Defect electronic structure

    Density of States Quantization at Interfaces