ME 301 Theory of Machines Ipp5v09

download ME 301 Theory of Machines Ipp5v09

of 40

Transcript of ME 301 Theory of Machines Ipp5v09

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    1/40

    1

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    2/40

    B0C is perpendicular to the slider axis

    A0A=a2, A0B0=a1,B0C=a4

    s =-a +a cos

    Function InvSliderCrank2(Crank, Fixed, Eccentricity,Config, Theta)Dim A 2

    sy= a2sin(12)

    = ma s s

    sX = Crank * Cos(Theta) - FixedsY = Crank * Sin(Theta)q = Mag(sX, sY)Fi = An sX sY

    = tan-1(sx,sy)

    2 2

    S43 = Sqr(q ^ 2 - Eccentricity ^ 2)Eta = Acos(Eccentricity / q)A(0) = S43A 1 = Fi - Confi * Eta

    43 4= 1 1 143 43sin cos tan

    s sc

    q q c

    = = =

    InvSlider2 = AEnd Function

    2

    14

    =

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    3/40

    B0C is not perpendicular to the slider axis

    Function InvSlider2(Crank, Fixed, Eccentricity, Alfa,

    0 =a2, 0 0=a1, 0 =a4

    sx=-a1+a2cos(12)

    Config, Theta)'Determines the slider displacement and the outputlink angle for an inverted slider-crank mechanismDim A(2) As Double

    sy= a2sin(12)q= mag(sx,sy)

    Dim S, Fi, Si, Q, Delta As DoubleDim sx, sy As Doublesx = -Fixed + Crank * Cos(Theta)sy = Crank * Sin(Theta)

    = tan-1(sx,sy)

    2 2 2cos sins a a = +

    S = Mag(sx, sy)Fi = Ang(sx, sy)Delta = S ^ 2 - Eccentricity ^ 2 * Sin(Alfa) 2

    Q = -Eccentricity * Cos(Alfa) + Sqr(Delta)

    1

    4 43 43tan ( cos , sin )a s s = +

    Si = Ang((Eccentricity + Q * Cos(Alfa)), Q * Sin(Alfa))A(0) = QA(1) = Fi - Config * SiInvSlider2 = A

    3

    ME 301 METU ME

    14

    = End Function

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    4/40

    A

    Example

    212

    A0

    Given:

    All the necessary

    4 link dimensions andthe input crank

    angle 12

    6B0

    5

    B

    All the position variables and the displacement of the slider 6 as a functionof input crank angle

    4

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    5/40

    1. Consider the loop formed by

    Alinks 1,2,3 and 4. An invertedslider-crank mechanism.

    12A

    y 14= 2, 1, , , 12+ -

    4

    xa=a2cos 12, ya=a1+a2s n 12

    43( , )

    a as mag x y=

    4

    x

    114 tan ( , )a ax y =

    5

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    6/40

    4

    12A0 2. Consider the loop1,4,5,6. A slider Crank

    C

    14

    ec an sm

    B0

    5

    B

    s14=-{SliderCrank(a4,a5,0,1,14)}

    xb=-a4cos(14), yb=-a4sin(14)

    x =s , =0

    6

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    7/40

    Example:

    D E

    Given: All the necessary link length

    66 5

    .Let:

    a2 = A0A=A0A

    A'CB

    3 , 3a4 = B0Ba5 = CD

    =

    A02 34

    b6=DE

    Also as shown on the fi ure the

    A

    B0

    fixed dimensions x1, y1 and thefixed angle 6 are known.

    Determine:

    7

    ME 301 METU ME

    comp e e pos on ana ys s o e mec an sm

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    8/40

    1. Solve the four-bar Loop (links, , ,

    1 1 1

    1

    anda x y

    = +

    =1 1 1

    12= 12+ 1-/2.

    {FourBar2(a2,a3,a4,a1,1,12)- 1}

    13 14

    8

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    9/40

    ( )2 12sinax a =

    ( )( )

    2 12

    ' 2 12

    cossin

    a

    a a

    y a x a x

    = = =

    ( )' 2 12

    1 4 14

    cos

    cos( )

    a a

    b

    y a y

    x x a

    = =

    = +

    ( )1 4 14

    2 12 3 3 13 3 3 13

    sin( )

    sin ( ) cos( ) ( ) cos( )

    b

    c a

    y y a

    x a a b x a b

    = +

    = + + = + +

    9

    ME 301 METU ME

    2 12 3 3 13 3 3 13cos s n s nc a y a a y a= + + = + +

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    10/40

    2 2' '

    ( ) ( )q x x y y= + 1

    ' 'tan (( ), ( ))a c a c x x y y=

    2 2 21 5 6q a a +

    52qa

    1 6 5cos2

    a a q

    a a

    + =

    15 =

    16 = 15 -

    10

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    11/40

    ' 6 16cos( )

    d a x x a = +

    ' 6 16sin( )d a y y aor

    = +

    5 15

    5 15

    cos( )

    sin( )

    d c

    d c

    x x a

    y y a

    = +

    = +

    6 16 6 6 16 6cos( ) cos( )

    e d d

    and

    x x b x b = + + = +

    11

    ME 301 METU ME

    6 16 6 6 16 6sin( ) sin( )e d d y x b x b = + + = +

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    12/40

    Or Consider Triangle ADE on link 6

    2 26 6 6 6 6 6

    2 2 2

    ( 2 cos( ))c a b a b

    a c b

    = +

    + 61

    6

    6 6

    cos2a c

    =

    ' 6 16 6cos( )e a x x c = +

    ' 6 16 6sin( )e a y y c = +

    12

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    13/40

    Example:D

    5

    A

    6

    3

    C

    2

    4

    1

    0 D0A 12a

    Given:

    .

    A0A=a2, AC=a3, BC=b3, BD=a5, D0D=a6, A0D0=b1,

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    14/40

    D

    5

    B6

    13

    5

    C

    3

    4

    13

    0D0

    A

    2

    12

    16

    14s

    a1

    1

    1. Obtain 13, s14 from the SliderCrank2() function

    [13, s14 ]= SliderCrank2(a2,a3,a1,1,12)

    2 12cos

    ax a =

    2 12

    14 3 13 3

    s n

    cos( )

    a

    b

    y a

    x s b

    =

    = +

    14

    ME 301 METU ME3 13 3 1

    sin( )b y b a = +

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    15/40

    2 2

    0 1 14 1( ) D C S b s a= = +D

    51

    ( )11 1 14 1tan ( ),b s a = B

    613

    5

    3

    13 13 1 3 = + C

    3

    4

    13

    D0

    16

    14s

    1

    . 15, 16

    [15, 16 ]= {FourBar2(b3,a5,a6,S, 1,13)-1}

    1 6 16cos( )

    sin

    d x b a

    a

    = +

    =15

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    16/40

    c1

    A0A=a2,; A0G=b2 ; GF=a3; BA=a6 ;

    DB0B=a5 B0C=b5 ; B0E=c5 ; EF=a5 ;CD=a5 ;

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    17/40

    A0ABB0A0 loop: A four-barc1

    A0GFEB0A0 loop

    B0CDB0 loop: SliderCrankD

    7

    8

    E18

    4

    45

    CB

    17

    15

    6

    F

    B

    b1

    2

    3

    A

    G

    A

    0

    16

    13

    a1

    17

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    18/40

    2. Obtain usin FourBar2 function

    [16, 15 ]= {FourBar2(a2,a6,a6,d1, 1,(12-1))+1}B0

    1

    6

    B

    1

    A

    16

    12

    1

    2A0

    a1

    [ ]1

    2 2 1

    1 1 1 1 1; tan ; (note the quadrant!!)d a b a b= + =

    18

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    19/40

    =7

    E

    14

    2 12 2

    2 12 2sin( )

    G

    Gy b = +4515

    5 B

    1 5 15 5

    1 5 15 5

    cos

    sin( )

    E

    E

    x a c

    y b c

    = +

    = +

    F

    b

    1 6

    2 2( ) ( ) E G E G

    GE s x x y y = = + 3

    A0

    13

    12

    [ ]1

    tan ( ); ( )cos

    E G E G x x y yan s a a

    = =

    a1

    2

    4 3cos( ; ; )ang a a s =

    13

    14 13

    =

    =

    19

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    20/40

    c1

    D 11 =

    8

    7

    18 5 15 5 7 17cos( ) sin

    a

    s b a

    = + +

    7E

    s18

    5

    C

    17

    15

    B

    0

    5

    20

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    21/40

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    22/40

    B0A0ABB0 loop: A four-bar

    4

    A

    A0ACD loop

    B0BCD loop

    3

    C

    2

    50

    6

    22

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    23/40

    Analytical Closed Form solution of the Loop EquationsOur aim is to obtain 14 as a function of 12

    A

    3 B13

    3a Loop Closure Equationfor the Four-Bar:

    Loop Closure Equation

    a e a e a a e2 3 1 412 13 14+ = +

    24

    144

    a

    A0 B0

    12

    2

    a1 a e a e a a ei i i2 3 1 412 13 14 + = +

    Mirror Image

    12

    14

    (This is the complex conjugate of theloop equation)

    13

    These two equations yield twocomplex equations in the complexdomain. When we equate the real and

    ,equations yield two identical scalarequations.

    23

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    24/40

    13A

    3a B

    3 Write the loop Equation and itsComplex conjugate in the form:

    a14

    2

    2 a4

    4 a e a a e a ei i i3 1 4 213 14 12 = +

    12

    a0

    A

    1

    1 B0 a e a a e a ei i i3 1 4 213 14 12 = +

    Multiply the two equations Side by side

    i i i i i2 13 13 14 12 14 12( ) =

    e ei i( ) ; = =0 1 cos ( ) / = + e ei i 2

    K K K1 14 2 12 3 14 12cos cos cos( ) + =

    2222

    Freudensteins

    Equation

    2

    1a

    K =4

    2a

    K =24

    4321

    3aa2

    K

    =

    K K Kcos cos cos cos sin sin + = +

    24

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    25/40

    K K K1 14 2 12 3 14 12 14 12cos cos cos cos sin sin + = +

    sin

    tan( )

    142

    1

    2=tan 2 141

    1

    2

    tan 2 1411

    2+

    tan

    14

    2

    1411

    2+

    A B Ctan tan2 14 14

    2 20

    +

    + =

    A K K K= + cos ( )12 2 3 11

    B = 2 12sin

    13212

    )1(cos KKKC +++=

    tan( )14

    2 4

    =

    B B AC

    = ACBB )4(

    tan2

    2

    1

    14or

    25

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    26/40

    K K K1 14 2 12 3 14 12 14 12cos cos cos cos sin sin + = +

    3122121414121 KcosKsinsincos)cosK( =Let 2 2 2D K

    D

    cos cos

    sin sin

    =

    =1 12

    12

    = =

    =

    1 12 12 1 1 12

    112

    cos s n cos

    tansin

    1 12

    D cos cos14-D sin sin14=K2 cos12-K3

    cos( ) cos cos sin sin + =

    cos( )cos

    142 12 3+ =

    D

    +=

    D

    KcosKcos 3122114

    26

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    27/40

    A

    3

    y

    13a

    3

    Loop Closure Eq. and its ComplexConjugate

    1312 ii

    1312

    31142 ii eaiasea ++=A

    0

    2

    1

    a

    4

    12a

    2

    1

    31142 x14s

    Eliminate 13:

    11423

    11423

    1213

    1213

    iaseaea

    iaseaea

    ii

    ii

    +=

    =

    Multiply:

    )()( 121212122 2121421214223 iiii eeaiaeeasasaa ++++=

    ii cos ( ) / = + e e 2 s n ee =

    We obtain a quadratic equation in s14:

    s ncos 122121221414 31 =++ aaaaaass

    2222 sin2sincos aaaaaas +=

    27

    ME 301 METU ME

    13

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    28/40

    Solving problems is a practical art, like

    swimming or skiing, or playing piano: you

    This book cannot offer you a magic key

    problems, but it offers you good examples

    or m tat on an many opportun t es orpractice: if you wish to learn swimming

    you have to go into the water and if you

    have to solve problems

    28

    ME 301 METU ME

    ,

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    29/40

    P

    30

    15

    AA

    0 122

    50

    100

    1

    B0

    3

    4

    150

    29

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    30/40

    =

    P

    0

    A0A=a2=3030

    1

    AQ=a3=150

    A0B0=a1-ib1=100-i150

    A0 122

    Q141412

    343112 eaesaea ++=

    141412

    343112

    iiieiaesibaea

    ++=100150

    14

    B0

    3

    4

    s4

    In StepWise Solution:

    150

    . 0 0

    2. Determine AB0 and its angular orientation

    3. Solve Triangle AB0

    Q

    30

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    31/40

    Analytical Solution: Eliminate s43

    141214 iii

    343112 eaesaea ++=141412 iii eiaesibaea

    ++=

    311243

    141214 iii eiaibaeaes +=

    )()( 1414141214141412 iiiiii Take the ratio and cross multiply

    31123112

    iiiiii

    Group Terms:

    3112 =

    )(sin2 ii eei =

    0cossin)sin( 314114114122 =++ abaa

    31411411412214122 coss ns ncoscoss n aaaa =++

    31

    ME 301 METU ME

    3122114122114 cossinsincos aaaab =++

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    32/40

    Let

    1221

    1221

    sinsin aaD =

    ( ) ( )

    =

    +++=++=

    12211

    12211221

    2

    1

    2

    2

    2

    1

    2

    1221

    2

    1221

    cos

    cos2sin2)cos(sin

    aa

    aaabaabaaabD

    + 1221 sinab

    = 14 14 3

    cos( ) cos cos sin sin + =

    D

    a314 )cos( =

    ++=

    a3114 cos

    32

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    33/40

    33

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    34/40

    34

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    35/40

    1. Stepwise method is an exact and efficient method for the analysis of planarmechanisms. It can be used in any computer package with mathematical

    computation facilities (i.e. MathCad, MathLab, Excel, Eureka, etc.) andcan be programmed in any computer language (Pascal, C, Basic, etc) orplatform (Visual C++, Visual Basic, Delphi, etc), or you can use this method inyour ca cu a ors as we .

    2. Graphical method gives a very good insight to a mechanism problem. The

    Graphical method coincides exactly with the stepwise method. You can useany ra t ng pac age uto a , a ey , ro es gn , eas , o or s

    , etc.) In most of these files you can perform kinematic analysis.

    3. Analytical solutions are possible for simple single loop mechanisms. They canalso be used similar to stepwise solution if there are several loops involved.

    4. Analytical solutions are sometimes required when performing more complexmechanism analysis or synthesis.

    However

    which cannot be solved analytically or using stepwise procedure.

    35

    ME 301 METU ME

    Example

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    36/40

    p

    36

    ME 301 METU ME

    Example

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    37/40

    BC=a4,CD=c4,

    BD=b4

    1512 14

    23 4 1 1 5

    ii i

    s e a e b ia a e

    + = + +12 14

    23 4 1 1 1 16( ) ( )i i

    s e b e b c i a s

    or

    + = + + +Requires simultaneous solution

    37

    ME 301 METU ME

    15 14

    5 4 1 16

    i i

    a e c e c is

    + = +

    o e wo oops

    Example

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    38/40

    Examplea6

    D 6

    16s

    E

    14

    113

    A

    B

    43

    =602

    12

    aa

    Ab115

    5

    0a

    C C0a1

    13 1512 14

    2 3 1 1 5 4

    i ii ia e a e a ib a e b e

    + = + +

    38

    ME 301 METU ME

    1312 14

    2 3 4 1 16 6( )a e a e a e ic s a+ + = +

    Iterative Solution of the Loop Closure Equations

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    39/40

    p q

    3a B

    13A

    12

    a14

    A

    2

    2 a4

    0

    1

    0

    141312 +=+ eaaeaea iii

    0),()cos()cos()cos( 141311221133144 ==+ faaaa

    0),()sin()sin()sin( 141321221133144 == faaa

    .(such as fixed point or Newton-Raphson method) to solve the set ofnonlinear equations

    39

    ME 301 METU ME

  • 8/6/2019 ME 301 Theory of Machines Ipp5v09

    40/40

    In Excel: Use Solver ADD-in to solve the set ofnonlinear e uations

    In MathCad Use given, Find routine.

    40

    ME 301 METU ME