Mario Sanchez_Universidad de Concepcion

download Mario Sanchez_Universidad de Concepcion

of 29

Transcript of Mario Sanchez_Universidad de Concepcion

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    1/29

    Opciones para el manejo ycomercializacin de escorias de cobre

    Pedro Reyes, Gerente General Divisin Chagres, Angloamerican Chile

    Armando Valenzuela, Director AL Prospecta Consultores, Chile

    Mario Snchez, Prof. Depto. Ingeniera Metalrgica, Universidad de Concepcin, Chile

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    2/29

    AGENDA

    1.- Introduccin 2.- Origen y caracterizacin de las

    escorias 3.- Generacion de escorias, tratamiento

    y valorizacin

    4.- Estudio de casos internacionales:Canad, India, Japn, Alemania, otros 5.- Comentarios finales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    3/29

    PARADIGMA = los Residuos Mineros son Desechos.

    y si consideramos estos desechos como RECURSOS?

    Estos NUEVOS RECURSOS tienen varias ventajas:Se encuentran en SUPERFICIE (bajos costos mineros).Los VOLUMENES DISPUESTOS SON CONOCIDOS y por lo

    general caracterizados (bajos costos geolgicos).La RECUPERACION, RECICLAJE Y REUTILIZACIN de sus

    componentes tiene un EFECTO POSITIVO (transporte,disposicin, impacto ambiental).

    PrincipiosIntroduccin

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    4/29

    La minera del cobre es la actividad ms importante en Chile.Aporta un porcentaje considerable del producto interno bruto. Sinembargo el impacto ambiental que ha producido ha sido una

    preocupacin permanente del Estado y de las Empresas.Del total de mineral extrado en una mina, slo el ~1% correspondeal metal, el resto es descartado como desechos:

    Residuos Slidos Tasa de generacin (ton/ton Cu)

    Escoria de fundicin ~ 2

    Relave de flotacin ~ 100

    Ripios de lixiviacin ~ 200

    Estril de mina ~ 400

    Introduccin

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    5/29

    Efluentes en Procesos Mineros-Metalrgicos

    Circuito de la Cuna a la Tumba para Metales y Residuos Generados en el proceso

    MINERA SUBTERRNEAMINERA RAJO ABIERTO

    REDUCCIN DE TAMAOTRITURACIN

    MOLIENDA

    PROCESOS DE CONCENTRACINSEPARACIN GRAVITACIONAL

    SEPARACIN MAGNTICAFLOTACIN

    ESPESAMIENTOFILTRADO

    SECADO

    PROCESOS PIRO, HIDRO,ELECTROMETALRGICOS

    METAL

    MINERAL

    MINERAL LIBERADO

    CONCENTRADO HMEDO

    CONCENTRADO SECO

    FAENAS MINERAS

    PROCESAMIENTODE

    MINERALES

    EXTRACCINDE METAL

    ESTERILESLASTRE

    MINERAL DE BAJA LEYAGUA DE MINAS

    TRANQUES DE RELAVESLODOSREACTIVOSAGUAS DE DESECHOS

    GASES DE FUNDICINPOLVOSRESIDUOS DE LIXIVIACINAGUAS DE DESECHOSEFLUENTES

    Introduccin

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    6/29

    Situacin histrica => acumulacin de EscoriasIntroduccin

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    7/29

    CHUQUICAMATA (CODELCO)

    POTRERILLOS (CODELCO)

    ALTONORTE(XSTRATA)

    CHAGRES (ANGLOAMERICAN)

    VENTANAS(CODELCO)

    CALETONES (CODELCO)

    PAIPOTE(ENAMI)

    Fundiciones de Concentrados enChile

    7 Fundiciones: 4 deCODELCO, 1 de ENAMI, 2Privadas

    Produccin anual: 1.8 millones

    ton cobre blister + aprox 4millones ton de escorias

    Acumulado: Cerca de 40millones de toneladas deescorias

    POR QULASESCORIAS?

    Origen y caracterizacin de las escorias

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    8/29

    Composicin media de una escoria de descarte en Chile:

    30-40 % hierro,35-40% silice,~ 10 % alumina oxido de calcio~ 1 % cobre~ 0.3 % molibdenoCantidades importantes de zinc y metales preciosos (Au, Ag)

    los metales (materiales) que otorgan mayor valor a la escoria, en orden

    descendente, son el Molibdeno, el Cobre, el Hierro, la Slice

    Origen y caracterizacin de las escorias

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    9/29

    Fuentes de generacin de escorias:

    1. Etapa de Fusin 2% - 10% Cu

    2. Etapa de conversin

    - Soplado de Fe 5% - 15% Cu

    - Soplado de Cu 25% - 55% Cu

    3. Etapa de refino > 50% Cu

    Alternativas de Procesamiento:

    1. Tratamiento Pirometalrgico

    2. Flotacin de Escorias

    Generacion de escorias, tratamiento y valorizacin

    Fundamentalmenterecuperar cobre

    NO SE PONE ATENCION A OTROS COMPONENTES !!!

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    10/29

    FUSION CONVERSION

    CONCENTRADO COBRE BLISTER

    Q(+) Q(-)Necesidad de Calor Generacin de Calor

    Horno de Reverbero Convertidor Peirce Smith

    FeS+3/2O2=FeO+SO2+Q Cu2S+O2=2Cu+SO2+QConcentrado+Fundentes+Q=Mata+Escoria+Gas

    ~25% Cu 80 % Cu >95 % CuFeS + Cu2S

    MataCu2S

    Metal Blanco

    Flash Outokumpu Convertidor Peirce Smith

    Bath El Teniente Convertidor Peirce Smith

    Q(-)

    Q(+)

    Horno Electrico Convertidor Peirce Smith

    TB Isasmelt Convertidor Peirce Smith

    Generacion de escorias, tratamiento y valorizacin

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    11/29

    Generacion de escorias, tratamiento y valorizacin

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    12/29

    Generaciondeescoriasypropuestasdetra

    tamiento

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    13/29

    Estudio de casos internacionales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    14/29

    Typically it is composed of Ferro silicate material and metal oxides, formed whenthe molten slag is quenched in cold water. This cooling process fractures theslag into coarse, angular particles making it an ideal choice in many abrasiveapplications.

    Copper slag is a fast cutting, high quality, yet economical choice for shipyards andcontractors. More than 20 years of history stand behind this type of abrasivegrain. This copper slag was shown to be the best abrasive not only in cuttingspeed, but also in cost per sq. ft.It is also environmentally friendly, approved to be recycled into the manufacture ofPortland cement.

    Estudio de casos internacionales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    15/29

    Typical Chemical Analysis (%):Iron Oxide Fe203 - 57.0Silicon Dioxide (total) SiO2 - 29.5Aluminum Oxide AL203 - 5.0Zinc - 3.5

    Calcium Oxide CaO - 2.5Magnesium Oxide MgO - 1.0Copper Cu - 1.0

    Estudio de casos internacionales

    Typical Physical Properties:Grain Shape AngularBulk Density (loose) 117 lbs./ft.3

    Moh Hardness -7Specific Gravity -3.8

    Typical Gradation:COARSE: marine growth, cement buildup, heavy corrosion and concreteexposed aggregate blastingFINE: Selective coating removal, steelwork, tanks, pipes, brickwork andconcreteEXTRA FINE: Wet blasting, motor bodywork, selective coating removal, timbercleaning

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    16/29

    Production of Slag in Japan

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    45000

    1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

    EF-production

    LD-production

    BF-production

    1000t

    Estudio de casos internacionales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    17/29

    Slag Utilization

    Uses of BF Slag in Japan (2007)

    Road

    Soil improbement

    Civil works

    Cement

    Concrete

    Aggregate

    Uses of Slag in Japan(2007)

    Road

    Soil improvement

    Civil works

    Cement

    Fertilizer

    OthersLand fill

    Total production 40939000 tTotal Uses 41868000 t

    Estudio de casos internacionales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    18/29

    Estudio de casos internacionales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    19/29

    Iron silicate stone AURUBIS

    >During the melting of copper concentrates an iron silicate melt is achieved by theaddition of sand and is made into two basic products: iron silicate stone and granules.

    >These products are processed and sold by the subsidiary PEUTE BAUSTOFF GMBH.>In a crushing and screening plant the iron silicate stone is processed to constructionmaterials, primarily for hydraulic construction purposes.>Hydraulic construction stone made of iron silicate stone is used for securing riverembankments and for levees in ports, rivers and as coastal protection.>Due to its high weight compared with other stone it offers considerable advantages.

    Estudio de casos internacionales

    E di d i i l

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    20/29

    Iron-silicate stone> When cooled down slowly in large cast iron pots, a high-grade crystallinestone is produced with edge lengths of up to 1,000 mm.> About 95 % of this consists of the mineral olivine and is comparable withmagmatic rock, such as basalt.

    > Iron-silicate stone is a high-grade, extremely dense and hard mineralconstruction material with special technological properties such as: High apparentdensity, High strength, Optimal surface roughness, Full volumestability, Very low water absorption, Very good frost resistance, Highresistance to weather

    Iron-silicate granulateAn amorphous granulate is produced after suddencooling in a water jet, comparable with washed sand0-4 mm.

    Estudio de casos internacionales

    E di d i i l

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    21/29

    Where are iron-silicate products used?

    These products play an important role in modern hydraulic construction work.> They secure embankments and the beds of rivers, canals and harbour basinsagainst current and wave impact.They protect harbour moles and break the waves rushing to the coast.> Iron-silicate products are also used in track construction, horticulture andlandscaping as well as in urban development and as a cement additive.

    Advantages of iron-silicate stone are:Consistent qualityAvailability throughout the yearHigh weathering and long-term resistanceFulfils all requirements of application regulations

    Conservation of natural resources

    Estudio de casos internacionales

    E t di d i t i l

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    22/29

    Clear advantages result in slope construction> Smaller layers are possible which also result inconsiderable savings in soil excavation work.

    > The use of smaller stones has significantadvantages as regards interlocking, stability andadaptation to the existing bank protection.

    > Basically, when using iron-silicate stone, the design engineer can arrange

    the structure with smaller types of stone and lower structure thickness.

    Estudio de casos internacionales

    Iron-silicate products in embankmentconstruction

    E t di d i t i l

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    23/29

    Iron-silicate stone as an extra load and as harbour

    bottom protection

    > Increasingly larger vessels and current actionrepeatedly cause erosion on the bottoms of

    harbours, canals, sluice areas and rivers that canbe remedied or even avoided by the use of iron-silicate stone.> A hydraulic construction stone mixture for theseapplications is produced by optimal mixing ofindividual fractions of iron-silicate stone.

    Estudio de casos internacionales

    E t di d i t i l

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    24/29

    Iron-silicate stone in road construction

    > Stone particles made of iron-silicate can

    be used as an anti-freeze layer and ballastas well as pavement beds in roadconstruction.

    Special advantages:Very good load-carrying capacity

    Very good resistance to frostGood water permeability

    Estudio de casos internacionales

    Estudio de casos internacionales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    25/29

    Further areas of application for iron-silicate products

    Urban development> Iron-silicate stone offers interesting design possibilities for urban constructionobjects as well as in horticulture and landscaping..

    > Iron-silicate granulate is ideally suitable for drainages and in landfill

    construction due to its material-specific properties.

    Estudio de casos internacionales

    Estudio de casos internacionales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    26/29

    Iron-silicate stone was used in the Mhlenberger Loch in

    Hamburg-Finkenwerder for bank protection, slopes andsecuring the harbour bottom along the new about 7 km longflood control system.

    Iron-silicate hydraulic construction stone has beensuccessfully used in the Kiel Canal for the canal extension. Thebank protection has to withstand very high stress on account ofthe shipping traffic.

    EXAMPLES OF UTILIZATION

    Estudio de casos internacionales

    The deeper waterways in Hamburgs Harbour have made it

    necessary to secure the river beds over the Elbe Tunnel.This was performed with iron-silicate stone 80 cm thick layerwith bordering sheet pile walls on both sides of the loweringtunnel.

    Comentarios finales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    27/29

    SlagsDesafios ambientales del futuro

    Grandes Montaas de escorias en distintas partes del mundo

    Metales y materiales que pueden recuperarse y valorizarse

    Es utpico pensar en una prctica Zero Slag ?

    Comentarios finales

    Cada metro cbico de escoria ferrosilicatada utilizada, significa no

    usar aproximadamente 1.4 m3 deroca, lo que resulta en una grancontribucin a no alterar lanaturaleza circundante y por endea hacer ms sustentable nuestrosrecursos naturales.

    Comentarios finales

  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    28/29

    Quo vadis?

    En relacin a los Metales y materiales presentes en las escorias

    (Mo, Fe, SiO2, etc.) : Usarlos o no?

    ~ Estabilizacin o Extraccin

    En relacin a las acciones de las Empresas: Fines Econmicos o Ecolgicos?

    ~ Situacin del Mercado Mundial de los Metales

    En relacin a la situacin de cada pas: Posible o imposible el zero waste?

    ~ Regulaciones y normativas

    Comentarios finales

    Fin

    http://www.mch.cl/noticias/index_neo.php?id=14782
  • 8/3/2019 Mario Sanchez_Universidad de Concepcion

    29/29

    Fin

    ?