LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION · 2019. 12. 18. · LECTURE I: METASTABLE...

28
LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION IRFAN SIDDIQI Department of Applied Physics Yale University 7-27-2005 Boulder Summer School R. Vijay M. Metcalfe E. Boaknin L. Frunzio C. Rigetti M.H. Devoret Daniel Prober Robert Schoelkopf Steve Girvin

Transcript of LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION · 2019. 12. 18. · LECTURE I: METASTABLE...

  • LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION

    IRFAN SIDDIQI

    Department of Applied PhysicsYale University

    7-27-2005

    Boulder Summer School

    R. VijayM. MetcalfeE. BoakninL. FrunzioC. RigettiM.H. Devoret

    Daniel ProberRobert SchoelkopfSteve Girvin

  • OUTLINELecture I: Metastable States of the Josephson Junction• Josephson junction dynamics• Non-linear Josephson inductance• DC / RF current biased junction

    - metastable states- escape dynamics

    • Bifurcation amplification

    Lecture II: Bifurcation Readout for Superconducting Qubits• Quantum information and superconducting qubits• Quantronium qubit

    - DC switching readout- RF bifurcation readout

    • Coherence measurements• Information flow • Stark shift spectroscopy and relaxation

  • GENERALIZED FLUX

    B

    ( ) ( )mag surfacet B t dAΦ = ⋅∫

    ( ) ( )magperimeter

    d tE t dl

    dtΦ

    ⋅ = −∫

    circuit element1 2

    + -

    Egs.

    ( ) ( )2

    1

    tt E t dl dt

    −∞′ ′Φ = − ⋅∫ ∫

    12 ( )t

    V t dt−∞

    ′ ′= ∫

    R L C JosephsonTunnel Element

  • JOSEPHSON TUNNEL JUNCTION

    left

    ll

    ie ϕψ=Ψ right rrie ϕψ=Ψ

    superconductor superconductor

    barrier

    V

    IDC EFFECT AC EFFECT

    0( ) ( )

    2d dV

    e dt dtϕ ϕϕ∆ ∆= =0 sin( )l rI I ϕ ϕ ϕ= ∆ = −

    • Supercurrent with V=0• I0 is material dependent (nA-mA)

    • Fixed V, I oscillates• Magnitude I0 , ν=2eV/h (483 MHz/µV)

  • THE NON-LINEAR JOSEPHSON INDUCTORI0

    = =

    CJL

    ( )1( )I t tL

    = Φ

    ( )0 0( ) sin[ / ]I t I t ϕ= Φ

    ( ) ( )3

    0 0

    0 0

    ...6

    tI Itϕ ϕ

    Φ⎛ ⎞= Φ − +⎜ ⎟

    ⎝ ⎠

    I0

    Gauge Invariant Phase DifferenceJosephson Inductance

    0

    0

    ( )TJBCS

    RL BCSIϕ

    π≡ =

    ∆ 0mod 2δ ϕ δ π

    ϕΦ

    ≡ ∆ ∼

  • THE EQUATION OF MOTION

    0( ) sinJV dVI t C IR dt

    δ= + +

    222 00 0 0 02

    ( )

    sin ( ) 0Jmass U

    drag

    d dC I I tdt R dt

    δδ

    ϕδ δϕ ϕ δ ϕ∂

    + + − =

    0

    0p

    J

    IC

    ωϕ

    =

    p JQ RCω=

    0 0 0( ) cos ( )U I I tδ ϕ δ ϕ δ= − −

  • DC CURRENT BIAS I: I-V Curve

    0DCV ϕ δ=

    T=216mKQ = 12

    Al / AlOx / Al

    0

    0

    : 0

    : 0DC

    DC

    I I

    I I

    δ

    δ

    < =

    > ≠

    superconducting

    dissipative

  • DC CURRENT BIAS II: Metastability & Switching

    I0=1.43 µA

    ( )0 1 0( )

    , , exp2

    pDC

    kT

    UI I TkT

    ω

    ωπ→

    >>

    ∆⎛ ⎞Γ = −⎜ ⎟⎝ ⎠

    ( )3/ 2

    0 00

    0 50 K

    2 2, 13

    DCDC

    IU I I Ie I

    u ≈

    ⎡ ⎤ ⎛ ⎞∆ = ⋅ −⎢ ⎥ ⎜ ⎟

    ⎝ ⎠⎣ ⎦

    1µA

  • DC CURRENT BIAS III: Macroscopic Quantum Tunneling (MQT)

    Martinis et al, PRB 35 (1987)

    * :7.2

    Up kTT T ek

    ω −∆> = Γ ∝

    * : constant7.2

    pT Tk

    ω< = Γ =

    thermalactivation

    MQT

  • RF CURRENT BIAS I: SOFTENING POTENTIAL

    ( ) sin( )RFI t I tω=

    max( ) sin( )t tδ δ ω γ= +

    0( )V t ϕ δ=

    • Frequency decreases w. drive amplitude

    • For ω

  • RF CURRENT BIAS II: TWO DYNAMICAL STATES

    • If , bistability

    • Dynamical states differ in oscillation amplitude & phase

    32

    p

    ω∆ >

    22 32 00 0 0 02 sin( ) 06J RF

    d dC I I tdt R dt

    ϕδ δ δϕ ϕ δ ϕ ω⎛ ⎞

    + + − − =⎜ ⎟⎝ ⎠

  • EXPERIMENTAL SETUP

    10mK

    Challenges

    • Fully coherent microwavemeasurements

    • High speed data acquisition

    • Precision circuit design(remember LJ ~ 300pH)

    special capacitors

    • Ultra-low noise wide-band electronics

    new cryo filters

  • Al

    Si3N4

    27.3 pF

    Cu

    JUNCTION + MICROWAVE CAPACITOR

    1000 nm Cu

    20 nm Cr

    35 nm Cr15 nm Ti

    Silicon Substrate

    Al

    1 mm

    200 nm Si3N4

    =Cu

    Alεr=7.5

    Al/Al203/AlJunction (1.17 µA)

    METALLICUNDERLAYER

  • HIGH FREQUENCY CRYOGENIC FILTERING

    -3dB @ 1 MHz

    -3dB @ 2 GHz

  • RF CURRENT BIAS III: Plasma Resonance

    kT/EJ

    VD

    C(nV)

    1/Q

    Q=ωpRC

  • STRAY REACTANCES

    Lstray Lbond = 2.8 nH

    LJ = ϕ0 / I0 = 0.28 nH

    C

    2 20

    1 14 2 strayp

    C C Lf e Iπ

    = +

    Lstray = 0.003 nH

    C = 27.3 pF

  • PHASE DIAGRAM:EXP & THYIN GOOD

    AGEEMENT

    • Dark region corresponds towell-jumping

    • All parameters in predictionmeasured experimentally!

  • THE DRIVEN PENDULUM

    ωω < ω0

    0 2g

    ω = πθ

    Regime Drive Dynamical States

    harmonic weak (θmax>> 2

    V

    δ θ

    θ

    10

    1

    0

    J

    p

    I l

    C gω ω

  • DYNAMICS OF DYNAMICAL SWITCHING

    2 µs20 ns

    • N = 600,000

    • ∆φ = 74 deg

    • HysteresisIB and IB’ correct ! ( )3/ 23/ 2 0

    16 13 3B

    I Iα α⎡ ⎤= −⎢ ⎥⎣ ⎦1 0.122

    p

    ωαω

    ⎛ ⎞= − =⎜ ⎟⎜ ⎟

    ⎝ ⎠

  • SWITCHING HISTOGRAMS

    • No latching• 40 ns rise + 20 ns settle• τm = 20 ns

    Set by SNR

    • Latching• 40 ns rise + 20 ns settle• τm = 300 ns

  • DC vs. ACIB = f(I0,α)I0

    0

    1

    0

    1

    IDC ↔ iRFVDC ↔ φRs ↔ α

  • ATTRACTORS

    0

    ( ) ( ) ( )sin cost t tδ δ ω δ ω⊥= +

    THY

    1

  • 1-D METAPOTENTIAL

    ( ) ( )3/ 22

    30 0

    0

    64, , 1 118 3

    10K

    dyn RFRF

    B

    dyn

    iU I i IIe

    u

    α α α⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟∆ = − − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠

    ( )0

    1/ 222

    (2 ) 35

    4

    0MHz

    13 3

    a

    RFa p

    B

    iRCI

    ω αω

    ω π

    ⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟= − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎦ ⎝ ⎠ ⎠≈

    ⎣ ⎝i

    ( )3/ 2 03/ 2 016 1 0 1

    3.

    3BI I Iα α⎡ ⎥⎦

    ≈⎤= −⎢⎣0 1

    exp2

    dyndyn a U

    kTωπ→

    ⎛ ⎞∆Γ = −⎜ ⎟

    ⎝ ⎠

  • ESCAPE TEMPERATURE

    *RFT

    *DCT

    Ib ~ 0.1 I0*

    RFT kω

    =

    Quantum Saturation at Different Temperature ! * 7.2

    pDCT k

    ω=

  • JOSEPHSON BIFURCATION AMPLIFIER

    JBA: INPUT COUPLES TO I0- φ (irf,I0) - Pswitch (irf,I0)

    - minimal backaction- no on-chip dissipation

  • AMPLIFICATION

    DEVICE INPUT CIRCUIT

    OPERATION

    SQUIDFluxLoop

    DC Switching

    Quantronium

    Single Cooper Pair Transistor

    DC Switching

    SQUID JBAFluxLoop

    RFBifurcation

    Quantronium+ JBA

    Single Cooper Pair Transistor

    RFBifurcation

  • SQUID JBA

    I0 = 1.16 µA

    B=B0

    0 1

    EXPI0 = 1.17 µA

    B=0

    10

    EXP

    • fidelity = 80% @ 250mKfor ∆I0 = 10nA

    • predict > 95% @ T=60mK (single shot)

    10 MHzRep. Rate

  • SUMMARY

    • RF DRIVEN JOSEPHSON JUNCTION- non-linear plasma resonance- metastable states- escape dynamics

    • NOVEL QUANTUM SATURATION

    • BIFURCATION AMPLIFICATION- observe predicted sensitivity- SQUID JBA- QUBIT READOUT Next Lecture

    LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTIONOUTLINEGENERALIZED FLUXJOSEPHSON TUNNEL JUNCTIONTHE NON-LINEAR JOSEPHSON INDUCTORTHE EQUATION OF MOTIONDC CURRENT BIAS I: I-V CurveDC CURRENT BIAS II: Metastability & SwitchingDC CURRENT BIAS III: Macroscopic Quantum Tunneling (MQT)RF CURRENT BIAS II: TWO DYNAMICAL STATESEXPERIMENTAL SETUPJUNCTION + MICROWAVE CAPACITORHIGH FREQUENCY CRYOGENIC FILTERINGRF CURRENT BIAS III: Plasma ResonanceSTRAY REACTANCESTHE DRIVEN PENDULUMDYNAMICS OF DYNAMICAL SWITCHINGSWITCHING HISTOGRAMSDC vs. ACATTRACTORS1-D METAPOTENTIALESCAPE TEMPERATUREJOSEPHSON BIFURCATION AMPLIFIERAMPLIFICATIONSQUID JBASUMMARY