Kuliah 12 Konduksi Metoda Numerik

60
1 NUMERICAL HEAT NUMERICAL HEAT CONDUCTION CONDUCTION DR. Ir. Nazarudin Sinaga, MS Laboratorium Efisiensi dan Konservasi Energi Universitas Diponegoro

Transcript of Kuliah 12 Konduksi Metoda Numerik

Page 1: Kuliah 12 Konduksi Metoda Numerik

1

NUMERICAL HEAT NUMERICAL HEAT CONDUCTIONCONDUCTION

DR. Ir. Nazarudin Sinaga, MS

Laboratorium Efisiensi dan Konservasi EnergiUniversitas Diponegoro

Page 2: Kuliah 12 Konduksi Metoda Numerik

IntroductionIntroduction

2

Analytical solution methods such as those presented in Chapter 2 are based on solving the governing differential equation together with the boundary conditions.

They result in solution functions for the temperature at every point in the medium.

Numerical methods, on the other hand, are based on replacing the differential equation by a set of n algebraic equations for the unknown temperatures at n selected points in the medium, and the simultaneous solution of these equations results in the temperature values at those discrete points.

Page 3: Kuliah 12 Konduksi Metoda Numerik

3

There are several ways of obtaining the numerical formulation of a heat conduction problem, such as the finite difference method, the finite element method, the boundary element method, and the energy balance (or control volume) method.

Each method has its own advantages and disadvantages, and each is used in practice.

In this chapter we will use primarily the energy balance approach since it is based on the familiar energy balances on control volumes instead of heavy mathematical formulations, and thus it gives a better physical feel for the problem.

Besides, it results in the same set of algebraic equations as the finite difference method.

Page 4: Kuliah 12 Konduksi Metoda Numerik

4

FIGURE 5–2 Analytical solution methods are limited to simplified problems in simple geometries.

Page 5: Kuliah 12 Konduksi Metoda Numerik

5

FIGURE 5–3The approximate numerical solution of a real-world problem may be more accurate than the exact analytical) solution of an oversimplified model of that problem.

Page 6: Kuliah 12 Konduksi Metoda Numerik

6

FIGURE 5–4Some analytical solutions are very complex and difficult to us

Page 7: Kuliah 12 Konduksi Metoda Numerik

Finite Difference FormulationFinite Difference FormulationOf Differential EquationsOf Differential Equations

7

The numerical methods for solving differential equations are based on replacing the differential equations by algebraic equations.

In the case of the popular finite difference method, this is done by replacing the derivatives by differences.

Page 8: Kuliah 12 Konduksi Metoda Numerik

8

Derivatives are the building blocks of differential equations, and thus we first give a brief review of derivatives.

Consider a function f that depends on x, as shown in Figure 5–6.

The first derivative of f(x) at a point is equivalent to the slope of a line tangent to the curve at that point and is defined as

Page 9: Kuliah 12 Konduksi Metoda Numerik

9

FIGURE 5–6 The derivative of a function at a point represents the slope of the function at that point.

Page 10: Kuliah 12 Konduksi Metoda Numerik

10

If we don’t take the indicated limit, we will have the following approximate relation for the derivative:

This approximate expression of the derivative in terms of differences is the finite difference form of the first derivative.

The equation above can also be obtained by writing the Taylor series expansion of the function f about the point x,

Page 11: Kuliah 12 Konduksi Metoda Numerik

11

and neglecting all the terms in the expansion except the first two.

The first term neglected is proportional to x2, and thus the error involved in each step of this approximation is also proportional to x2.

However, the commutative error involved after M steps in the direction of length L is proportional to x since M x2 = (L/x)x2 = L x.

Therefore, the smaller the x, the smaller the error, and thus the more accurate the approximation.

Page 12: Kuliah 12 Konduksi Metoda Numerik

12

FIGURE 5–7Schematic of the nodes and the nodal temperatures used in the development of the finite difference formulation of heat transfer in a plane wall.

Page 13: Kuliah 12 Konduksi Metoda Numerik

13

Using Eq. 5–6, the first derivative of temperature dT/dx at the midpoints m-1/2 and m+1/2 of the sections surrounding the node m can be expressed as

The second derivative of temperature at node m can be expressed as

Page 14: Kuliah 12 Konduksi Metoda Numerik

14

The the differential equation

which is the governing equation for steady one- dimensional heat transfer in a plane wall with heat generation and constant thermal conductivity, can be expressed in the finite difference form as (Fig. 5–8)

Page 15: Kuliah 12 Konduksi Metoda Numerik

15

FIGURE 5–8The differential equation is valid at every point of a medium, whereas thefinite difference equation is valid at discrete points (the nodes) only.

Page 16: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

16

Metode Relaksasi

Untuk menyelesaikan soal konduksi panas secara numerik, kita membagi sistem menjadi sejumlah subvolume yang kecil dan memberi nomor acuan pada tiap subvolume dan asumsikan bahwa tiap subvolume bersuhu yang sama dengan suhu titik pusatnya dan kita mengganti sistem fisik dengan jaringan batang-batang khayal.

Page 17: Kuliah 12 Konduksi Metoda Numerik

17

Page 18: Kuliah 12 Konduksi Metoda Numerik

18

Page 19: Kuliah 12 Konduksi Metoda Numerik

19

Untuk mendapatkan persamaan temperattur untuk nodal-m nodal maka berlakukan hukum kelestarian energi pada nodal-m, yang dikelilingi oleh nodal m-1 dan nodal m+1

Page 20: Kuliah 12 Konduksi Metoda Numerik

20

Page 21: Kuliah 12 Konduksi Metoda Numerik

21

Page 22: Kuliah 12 Konduksi Metoda Numerik

22

Page 23: Kuliah 12 Konduksi Metoda Numerik

23

Dengan asumsi distribusi suhu linier, maka konduktansinya adalah :

atau

Page 24: Kuliah 12 Konduksi Metoda Numerik

24

Kalau disederhanakan:

Pada dasar sirip (gb. 3-11b) suhu T1 sama dengan suhu dinding dan tetap konstan:

Page 25: Kuliah 12 Konduksi Metoda Numerik

25

Pada ujung sirip panas berpindah secara konveksi:

Page 26: Kuliah 12 Konduksi Metoda Numerik

26

Page 27: Kuliah 12 Konduksi Metoda Numerik

27

Page 28: Kuliah 12 Konduksi Metoda Numerik

28

Page 29: Kuliah 12 Konduksi Metoda Numerik

29

Page 30: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

30

Sistem Dua Dimensi:

Metode numerik dapat dengan mudah diperluas bagi sistem dua maupun tiga dimensi seperti terlihat pada gambar 3-13:

Page 31: Kuliah 12 Konduksi Metoda Numerik

31

Page 32: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

32

Keseimbangan panas keadaan Stedi pada suatu titik dibagian dalam adalah:

Dengan mensubstitusi persamaan konduksi untuk masing-masing titik/nodal maka diperoleh:

Page 33: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

33

Atau:

Page 34: Kuliah 12 Konduksi Metoda Numerik

34

Page 35: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

35

Page 36: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

36

Page 37: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

37

Page 38: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

38

Page 39: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

39

Page 40: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

40

Page 41: Kuliah 12 Konduksi Metoda Numerik

Konduksi 2D dan 3D StediKonduksi 2D dan 3D Stedi

41

Page 42: Kuliah 12 Konduksi Metoda Numerik

42

Page 43: Kuliah 12 Konduksi Metoda Numerik

43

Page 44: Kuliah 12 Konduksi Metoda Numerik

44

Page 45: Kuliah 12 Konduksi Metoda Numerik

45

Page 46: Kuliah 12 Konduksi Metoda Numerik

46

FIGURE 5–26 Schematic for Example 5–3 and the nodal network (the boundaries of volume elements of the nodes are indicated by dashed lines).

Page 47: Kuliah 12 Konduksi Metoda Numerik

47

Page 48: Kuliah 12 Konduksi Metoda Numerik

48

Page 49: Kuliah 12 Konduksi Metoda Numerik

49

Page 50: Kuliah 12 Konduksi Metoda Numerik

50

Page 51: Kuliah 12 Konduksi Metoda Numerik

51

Page 52: Kuliah 12 Konduksi Metoda Numerik

52

Page 53: Kuliah 12 Konduksi Metoda Numerik

53

Page 54: Kuliah 12 Konduksi Metoda Numerik

54

Page 55: Kuliah 12 Konduksi Metoda Numerik

55

Page 56: Kuliah 12 Konduksi Metoda Numerik

56

Page 57: Kuliah 12 Konduksi Metoda Numerik

57

Page 58: Kuliah 12 Konduksi Metoda Numerik

58

Page 59: Kuliah 12 Konduksi Metoda Numerik

59

Page 60: Kuliah 12 Konduksi Metoda Numerik

Powerpoint TemplatesPage 60

The EndThe EndTerima Terima kasihkasih