Hilti Profis Anchor 2 User Guide (US)

293

Click here to load reader

description

User manual for Hilti Profis Anchor software to allow design of post-installed anchors to US design methods such as ACI 318

Transcript of Hilti Profis Anchor 2 User Guide (US)

  • PROFIS Anchor Design Guide

    Anchor design at a click.

    Hilti. Outperform. Outlast.

  • Table of Contents

    1Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Tension . . . . . . 5

    Tension Steel Strength . . . . . . . 6

    Equations Nsa cast-in-place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Equations Nsa post-installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Equations Nsa versus Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Variables Ase,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Variables futa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Calculations Nsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Results Nsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Results Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Results steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Results Nsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    Tension Concrete Breakout Strength . . . 13

    Equations Anc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Equations ANc0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Equations Nb D-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Equations Nb D-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Equations Ncb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Equations Ncbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Equations Ncb or Ncbg versus Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Equations cp,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Equations ec,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Equations ed,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Variables ca,min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Variables cac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Variables ec1,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Variables ec2,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Variables fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Variables hef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Variables kc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Variables c,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Calculations ANc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Calculations ANc0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Calculations Nb D-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Calculations Nb D-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Calculations cp,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Calculations ec1,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Calculations ec2,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Calculations ed,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Results Ncb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Results Ncbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Results Ncb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Results Ncbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Results Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Results concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

  • Table of Contents

    2Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Tension Pullout Strength Mechanical Anchors . . . . . . . 52

    Equations Npn,fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Equations Npn,fc versus Nua. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Variables fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Variables Np,2500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Variables c,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Calculations (fc 2500) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Results Npn,fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Results Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Results Npn,fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Results concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Tension Pullout Strength Cast-In-Place Anchors . . . . . . . 61

    Equations NP = 8Abrgfc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Equations NPn = c,PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Equations Npn Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Variables Abrg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Variables fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Variables c,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Calculations NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Results Npn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Results Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Results Npn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Results concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    Tension Bond Strength Adhesive Anchors . . . . . . . 69

    Equations ANa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Equations ANa0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Equations ccr,na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Equations Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Equations Na0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Equations Nag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Equations Na or Nag versus Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Equations ec,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Equations ed,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Equations g,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Equations g,Na0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Equations p,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Equations scr,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Equations ,max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Variables ca,min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Variables cac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Variables da . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Variables ec1,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Variables ec2,N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Variables fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Variables hef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Variables bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Variables kc,xxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Variables savg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Variables k,uncr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Variables k,xxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Calculations ANa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Calculations ANa0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Calculations ccr,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Calculations Na0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Calculations ec1,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Calculations ec2,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Calculations ed,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Calculations g,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Calculations g,Na0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Calculations p,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Calculations scr,Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Calculations k,max,xxxx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Results N,seis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Results Na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Results Nag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Results Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Results N,seisNa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Results N,seisNag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Results bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

  • Table of Contents

    3Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Tension Side-Face Blowout Strength for Cast-in-Place Anchors . . . . . . . 114

    Equations corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Equations group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Equations Nsb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Equations Nsbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Equations Nsb or Nsbg versus Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Variables Abrg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Variables ca1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Variables ca2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Variables fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Variables s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Calculations group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Calculations corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Results Nsb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Results Nsbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122Results Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Results Nsb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Results Nsbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Results concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    Shear . . . . . . . . 129

    Shear Steel Strength . . . . . . . 130

    Anchor Steel Strength in Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Equations Vsa for Adhesive Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Equations Vsa for Headed Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Equations Vsa for Headed Studs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Equations Vsa Seismic for Mechanical Anchors . . . . . . . . . . . . . . . . . . . . 132Equations Vsa Static for Mechanical Anchors . . . . . . . . . . . . . . . . . . . . . . 132Equations Vsa versus Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Variables V,seis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Variables Ase,V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Variables futa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Variables Vsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Calculations Vsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Results Vsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Results Vsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Results eb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Results steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Results Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    Shear Concrete Breakout Strength . . . . . . . 142

    Equations AVc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Equations AVc0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Equations Vcb or Vcbg Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Equations ec,v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Equations ed,v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146Equations h,v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Equations Vb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Equations Vcb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Equations Vcbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147Variables ca1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Variables ca2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Variables da . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Variables eV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Variables fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Variables ha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154Variables le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155Variables c,V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Variables parallel,V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157Calculations AVc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Calculations AVc0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159Calculations ec,V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159Calculations ed,V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162Calculations h,V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Calculations Vb Equation D-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Calculations Vb Equation D-25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Results Vcb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Results Vcbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Results Vcb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Results Vcbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Results concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168Results Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    Shear Pryout Strength Concrete Breakout Controls . . . . . . . 171

    Equations Vcp or Vcpg versus Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171Equations Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171Equations Vcpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172Variables kcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Calculations Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176Calculations Vcpg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176Results Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Results Vcpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Results Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178Results Vcpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179Results concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182Results Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

  • Table of Contents

    4Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Shear Pryout Strength Bond Controls . . . . . . . 185

    Equations Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185Equations Vcpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185Equations Vcp or Vcpg versus Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Variables kcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187Calculations Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188Calculations Vcpg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188Results Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Results Vcpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Results Vcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Results Vcpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Results concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191Results seismic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193Results Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    Shear Steel Failure with Lever Arm . . . . . . . 196

    Equations Stand-off Condition None . . . . . . . . . . . . . . . . . . . . . . . . . . 196Equations Stand-off Condition without Clamping. . . . . . . . . . . . . . . . . 196Equations Stand-off Condition with Clamping . . . . . . . . . . . . . . . . . . . 197Equations Stand-off Condition with Grouting . . . . . . . . . . . . . . . . . . . . 198Equations Vsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200Equations MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200Equations MS0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200Equations S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Equations Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201Equations (1 Nua /Nsa ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202Equations Vs

    M versus Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202Variables M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Variables fu,min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Variables Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204Variables z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Variables d0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206Variables n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Variables Nsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207Calculations Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Calculations MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Calculations MS0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208Calculations S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Calculations (1 Nua /Nsa ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Results Vs

    M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Results nonductile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Results steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Results VSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Results Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    ACI 318-08 Seismic Provisions . . . . . . . 215

    Seismic Calculation ACI 318-08, Part D.3.3 . . . . . . . . . . . . . . . . . . . . . . . 216Seismic Calculation ACI 318-08, Part D.3.3.2 . . . . . . . . . . . . . . . . . . . . . . 217Seismic Calculation ACI 318-08, Part D.3.3.3 . . . . . . . . . . . . . . . . . . . . . . 219Seismic Calculation ACI 318-08, Part D.3.3.4 . . . . . . . . . . . . . . . . . . . . . . 221Seismic Calculation ACI 318-08, Part D.3.3.5 . . . . . . . . . . . . . . . . . . . . . . 223Seismic Calculation ACI 318-08, Part D.3.3.6 . . . . . . . . . . . . . . . . . . . . . . 225

    ACI 318-11 Seismic Provisions . . . . . . . 227

    Seismic Calculation ACI 318-11, Part D.3.3.1 . . . . . . . . . . . . . . . . . . . . . . 228 Seismic Calculation ACI 318-11, Part D.3.3.2 . . . . . . . . . . . . . . . . . . . . . . 229 Seismic Calculation ACI 318-11, Part D.3.3.3 . . . . . . . . . . . . . . . . . . . . . . 230 Seismic Calculation ACI 318-11, Part D.3.3.4.1 . . . . . . . . . . . . . . . . . . . . 231 Seismic Calculation ACI 318-11, Part D.3.3.4.2 . . . . . . . . . . . . . . . . . . . . 233 Seismic Calculation ACI 318-11, Part D.3.3.4.3 . . . . . . . . . . . . . . . . . . . . 235 Seismic Calculation ACI 318-11, Part D.3.3.4.4 . . . . . . . . . . . . . . . . . . . . 247 Seismic Calculation ACI 318-11, Part D.3.3.4.5 . . . . . . . . . . . . . . . . . . . . 248 Seismic Calculation ACI 318-11, Part D.3.3.5.1 . . . . . . . . . . . . . . . . . . . . 249 Seismic Calculation ACI 318-11, Part D.3.3.5.2 . . . . . . . . . . . . . . . . . . . . 251 Seismic Calculation ACI 318-11, Part D.3.3.5.3 . . . . . . . . . . . . . . . . . . . . 253Seismic Calculation ACI 318-11, Part D.3.3.5.4 . . . . . . . . . . . . . . . . . . . . 260 Seismic Calculation ACI 318-11, Part D.3.3.6 . . . . . . . . . . . . . . . . . . . . . . 261 Seismic Calculation ACI 318-11, Part D.3.3.7 . . . . . . . . . . . . . . . . . . . . . . 262

    Factored Load Calculations . . . . . . . 263

    Load Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264Equation Nn versus Nua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265Equation Vn versus Vua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265% Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266Resultant Tension and Shear Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267Resultant Shear Load Torsion and Shear Towards Edge. . . . . . . . . . . . . . 268Resultant Shear Load Torsion and Shear Away From Edge . . . . . . . . . . . 271Resultant Shear Load Torsion and Shear Parallel To Edge . . . . . . . . . . . . 274Resultant Shear Load Pure Torsion with a Fixed Edge . . . . . . . . . . . . . . . 277

    Interaction Calculations . . . . . . . 280

    Equations Tri-Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Equations Parabolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281Calculations % Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

    Base Plate Calculations . . . . . . . 283

    General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284Neutral Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

  • Tension

    5

    The PROFIS Anchor Design Guide provides information about the following:

    Strength Design calculations per ACI 318-08

    Strength Design calculations per ICC-ES AC308

    PROFIS Anchor design assumptions

    Utilizing data from ICC-ES Evaluation Service Reports

    This Design Guide is intended to be used as a reference for the information provided in the Design Report. Questions about a particular section in the Design Report output can be referenced directly to the corresponding section in the Design Guide.

    The TENSION section of the Design Guide provides information on the tension design strengths calculated using PROFIS Anchor.

    Tension Steel Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Tension Concrete Breakout Strength . . . . . . . . . . . . . . . 13

    Tension Pullout Strength Mechanical Anchors . . . . . 52

    Tension Pullout Strength Cast-In-Place Anchors . . . . 61

    Tension Bond Strength Adhesive Anchors . . . . . . . . 69

    Tension Side-Face Blowout Strength for Cast-in-Place Anchors . . . . . . . . 114

    Hilti. Outperform. Outlast.

    Tension

  • Tension Steel Strength

    6Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations Nsa cast-in-placeEquations Reference Comments

    cast-in-place anchors

    Nsa = nAse,N futa

    ACI 318-08, Part D.5.1.2 EQ. (D-3) PROFIS Anchor uses EQ. (D-3) to calculate the Nominal Steel Strength in tension (Nsa) for a single cast-in-place anchor.

    The Design Report shows EQ. (D-3) in the Equations section of the Steel Strength design parameters.

    Equations Nsa post-installedEquations Reference Comments

    post-installed anchors

    Nsa = see ICC-ES ESR-xxxx

    Refer to the ICC-ES Evaluation Service Report for the selected anchor.

    When designing post-installed anchors, PROFIS Anchor uses a pre-calculated value for the Nominal Steel Strength in tension (Nsa) that is given in the ICC-ES Evaluation Service Report for each anchor. This value corresponds to Nominal Steel Strength (Nsa) for a single anchor calculated using EQ. (D-3).

    The Design Report for post-installed anchors shows EQ. (D-3) in the Equations section of the Steel Strength design parameters but references the ESR from which the value for Nsa has been taken.

    Equations Nsa versus NuaEquations Reference Comments

    Nsa > Nua ACI 318-08, Part D.4.1.1 EQ. (D-1) Per the provisions of ACI 318-08, D.4.1.2; PROFIS Anchor compares each calculated Design Strength in tension (Nn) to the Factored Service Load in tension (Nua) that has been input by the user.

    When Nua is not equally distributed among the anchors in the connection, PROFIS Anchor compares the Design Steel Strength in tension (Nsa) for a single anchor to the highest loaded anchor in tension. When Nua is equally distributed among the anchors in the connection, PROFIS Anchor compares Nsa for a single anchor to Nua divided by the number of anchors in tension.

    A summary of tension Design Strengths versus tension Factored Service Loads is given in Part 3. Tension load of the Design Report.

  • Tension Steel Strength

    7Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables Ase,n Variables Reference Comments

    A se,N ACI 318-08, Part D.5.1.2 EQ. (D-3) Ase,N is the effective cross-sectional area of a single anchor in tension. Values for Ase,N specific to each anchor in the PROFIS Anchor portfolio are stored in the program internal database.

    The Design Report shows Ase,N in the Variables section of the Steel Strength design parameters.

    Variables futaVariables Reference Comments

    futa ACI 318-08, Part D.5.1.2 EQ. (D-3) futa is the specified tensile strength of the anchor steel. Values for futa specific to each anchor in the PROFIS Anchor portfolio are stored in the program internal database.

    Cast-in-place anchor steel properties correspond to ASTM F1554 bolts and AWS D1.1 headed studs. Post-installed anchor steel properties are given in the ICC-ES Evaluation Service Report for each anchor.

    The Design Report shows futa in the Variables section of the Steel Strength design parameters.

    Variables nVariables Reference Comments

    n_______1.000

    ACI 318-08, Part D.5.1.2 EQ. (D-3) PROFIS Anchor always uses n = 1 to calculate Nsa because some of the anchors in the connection may be more highly loaded than others in the connection. The Design Report shows n = 1.0 in the Variables section of the Steel Strength design parameters.

  • Tension Steel Strength

    8Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Calculations Nsa Calculations Reference Comments

    Nsa cast-in-place anchor: ACI 318-08 EQ. (D-3) post-installed anchor: value from ESR-xxxx

    PROFIS Anchor calculates Nsa per EQ. (D-3) for a single cast-in-place anchor, or uses the value given for Nsa in the ICC-ES Evaluation Service Report for a single post-installed anchor.

    The Design Report shows the calculated value for Nsa in the Calculations section and in the Results section of the Steel Strength design parameters.

  • Tension Steel Strength

    9Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Results NsaResults Reference Comments

    Nsa cast-in-place anchor: ACI 318-08 EQ. (D-3) post-installed anchor: value from ESR-xxxx

    PROFIS Anchor calculates Nsa per EQ. (D-3) for a single cast-in-place anchor, or uses the value given for Nsa in the ICC-ES Evaluation Service Report for a single post-installed anchor.

    The Design Report shows the calculated value for Nsa in the Calculations section and in the Results section of the Steel Strength design parameters.

    Results NuaResults Reference Comments

    Nua Strength Design compares a calculated Design Strength (Nn) to a Factored Service Load (Nua). ACI 318-08, Chapter 2 defines Nua as the factored tensile force applied to an anchor or group of anchors.

    PROFIS Anchor users select Strength Design provisions by clicking on the Loads tab, then highlighting and clicking on Strength Design according to ACI 318-08.

    Factored load values can be input directly on the main screen. Place the cursor over the appropriate load parameter, highlight it, and input the desired value. Click the Enter key to set the new value.

    Factored load values can also be input by clicking on the Loads tab, then clicking on the Enter loads icon.

  • Tension Steel Strength

    10Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Results Nua (continued)The Design Report shows the factored loads input by the user in Part 1. Input Data. PROFIS Anchor does not apply any load factors. It is the responsibility of the user to determine factors and then input a load value that includes the factors. PROFIS Anchor assumes the factored loads input by the user utilize the factors given in ACI 318-08 Chapter 9, Part 9.2.

    The section denoted Anchor reactions in Part 2. Load case/Resulting anchor forces of the Design Report shows the tension and shear loads acting on each anchor resulting from the factored loads input by the user. The sum of these individual anchor loads equals the resultant load for tension or shear.

    Load combinations input by the user may result in some of the anchors being loaded in tension and some in compression. The Design Report shows the magnitude and location of the resultant tension and compression loads acting on the connection. This information is shown in Part 2. Load case/Resulting anchor forces. PROFIS Anchor does not perform calculations for anchors determined to be in compression.

    The Design Report shows Nua corresponding to Steel Strength in Part 3. Tension Load and in the Results section of the Steel Strength design parameters. When evaluating Design Steel Strength, Nua corresponds to the highest factored tension load acting on a single anchor for the anchors that are determined to be in tension. Part 3 Tension load will show a single asterisk (*) next to Steel Strength indicating that the value for Nua pertains to the highest factored tension load acting on a single anchor for the anchors that are determined to be in tension.

    Per ACI 318-08, Part D.4.1.1; Nsa Nua must be satisfied. If the value for Nsa shown under the heading Capacity in Part 3 of the Design Report is the value shown for Nua under the heading Load, the note OK will appear under the heading Status. The statement Fastening meets the design criteria! will be given at the back of the Design Report if all of the other calculated Design Strengths in tension and shear are the corresponding value for Nua or Vua respectively.

    If the value for Nsa is < Nua, the note not recommended will appear under the heading Status. The statement Fastening does not meet the design criteria! will be given at the back of the Design Report because the criteria of D.4.1.1 have not been satisfied.

    The value shown under the heading Utilization N [%] in Part 3 of the Design Report corresponds to the ratio Nua / Nn. When evaluating Steel Strength, Nua corresponds to the highest factored tension load acting on a single anchor for the anchors that are determined to be in tension as described above. Nn corresponds to the Design Steel Strength Nsa as defined above.

  • Tension Steel Strength

    11Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Results steelResults Reference Comments

    steel cast-in-place anchors: ACI 318-08, Part D.4.4.a.i post-installed anchors: ICC-ES ESR-xxxx

    PROFIS Anchor uses the provisions of ACI 318-08, D.4.4.a.i to determine the Steel Strength -factor for cast-in-place anchors. This value = 0.75 for all cast-in-place anchors in the PROFIS Anchor portfolio because all of these anchors satisfy the definition of ductile steel element given in ACI 318-08, Part D.1.

    Steel Strength -factors used for post-installed anchors follow the provisions of ACI 318-08, D.4.4; but the actual value for the -factor is derived from testing. Therefore, the -factors for post-installed anchors are specific to an anchor. The -factors are given in the ICC-ES Evaluation Service Report for each anchor. PROFIS Anchor uses the -factor from the ESR to calculate the Design Steel Strength for post-installed anchors.

    The Design Report denotes the Steel Strength -factor as steel and shows this value in the Results section of the Steel Strength design parameters.

    Results nonductileResults Reference Comments

    nonductile ACI 318-08, Part D.3.3.6 The PROFIS Anchor Design Report denotes the reduction factor defined in ACI 318-08, Part 3.3.6 as nonductile. This factor is applied to Nominal Strengths corresponding to non-ductile failure modes.

    For tension calculations, these modes include: Nominal Steel Strength for anchor elements that do not satisfy the

    definition of ductile steel element given in Part D.1. Nominal Concrete Breakout Strength

    Nominal Pullout Strength

    Nominal Bond Strength

    Nominal Side-Face Blowout Strength

    For shear calculations, these modes include: Nominal Steel Strength for anchor elements that do not satisfy the

    definition of ductile steel element given in Part D.1. Steel Strength With Lever Arm for anchor elements that do not satisfy

    the definition of ductile steel element given in Part D.1. Nominal Concrete Breakout Strength

    Nominal Pryout Strength

    Click on the Loads tab to select seismic conditions.

    Click on the icon titled Seismic Design. The Design Report will indicate if Seismic Design has been selected by highlighting the Seismic Design icon in yellow.

    Select D.3.3.6 as a design option. Values for nonductile can be input ranging from 0.4 to 1.0. It is the responsibility of the user when inputting values for nonductile different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. PROFIS Anchor defaults to the D.3.3.6 value of nonductile = 0.4 if no specific value is input by the user.

  • Tension Steel Strength

    12Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Results nonductile (continued)Results Reference Comments

    The value for nonductile is shown in the Results section of the Steel Strength design parameters.

    The Design Report results to the left show how nonductile is applied to the Nominal Steel Strength because the anchor is considered to be a non-ductile steel element.

    The Design Report results to the left show how nonductile is not applied to the Nominal Steel Strength because the anchor is considered to be a ductile steel element.

    Results NsaResults Reference Comments

    Nsa ACI 318-08, Part D.4.1.1 EQ. (D-1) Strength Design compares a calculated Design Strength (Nn) to a Factored Service Load (Nua).

    The PROFIS Anchor Design Report denotes the Design Steel Strength as Nsa and shows this value in the Results section of the Steel Strength design parameters.

    Design Steel Strength equals: steel * Nsa for non-seismic conditions.

    Design Steel Strength equals: steel * nonductile * Nsa for seismic conditions.

  • Tension Concrete Breakout Strength

    13Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations AncEquations Reference Comments

    ANc ACI 318-08, Fig. RD.5.2.1(b) ANc is defined in ACI 318-08, Part D.5.2.1 as the projected concrete failure area of a single anchor or group of anchors. PROFIS Anchor calculates ANc per the provisions of D.5.2.1 and as illustrated in Fig. RD.5.2.1(b).

    The Design Report shows ANc in the Equations section of the Concrete Breakout Strength design parameters. The Design Report shows the calculated value of ANc in the Calculations section of the Concrete Breakout Strength design parameters.

    The illustration to the left shows an example for calculating ANc.

    The PROFIS Anchor user can input the spacing and edge distance parameters used to calculate ANc directly on the main screen.

    Place the cursor over the appropriate spacing or edge distance parameter, highlight it, and input the desired value.

    Click the Enter key to set the new value.

    Anchor spacing values can also be input by clicking on the Anchor Layout tab, then clicking on the Customize layout icon.

    Edge Distance values can also be input by clicking on the Base Material tab, then clicking on the Input geometry icon.

  • Tension Concrete Breakout Strength

    14Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations ANc0Equations Reference Comments

    ANc0 ACI 318-08, Fig. RD.5.2.1(a) and Equation (D-6 ) ANc0 is defined in ACI 318-08, Part D.5.2.1 as the projected concrete failure area of a single anchor. It corresponds to the idealized area of influence assumed to develop at the surface of the concrete when spacing and edge distance are unlimited.

    PROFIS Anchor calculates ANc0 per the provisions of D.5.2.1 and as illustrated in Fig. RD.5.2.1(a) using a value input for effective embedment depth. Refer to the illustration at the left.

    The Design Report shows EQ. (D-6) in the Equations section of the Concrete Breakout Strength design parameters, and the calculated value for ANc0 in the Calculations section of the Concrete Breakout Strength design parameters.

    Equations Nb Equations Reference Comments

    Nb = kc fc hef 1.5 ACI 318-08, Part D.5.2.2 Equation (D-7) Nb is defined in ACI 318-08 as the basic concrete breakout strength in tension of a single anchor in cracked concrete. Nb is multiplied by various modification factors that account for anchor spacing and edge distances (ANc / ANc0); eccentric loading (ec,n), edge distances < 1.5 hef (ed,n); uncracked concrete (c,N); or splitting (cp,N) to determine the Nominal Concrete Breakout Strength in tension.

    The PROFIS Anchor Design Report shows EQ. (D-7) in the Equations section of the Concrete Breakout Strength design parameters.

    Equations Nb Equations Reference Comments

    Nb = 16 fc hef 5 / 3 ACI 318-08, Part D.5.2.2 Equation (D-8) PROFIS Anchor calculates Nb per Equation (D-8) for cast-in-place anchors only, when 11 hef 25. PROFIS Anchor does not use EQ. (D-8) for post-installed anchor calculations.

    When EQ. (D-8) is used, kc = 16 and hef is raised to the 5/3 power.

    Refer to the comments for Nb calculated using EQ. (D-7) for additional details regarding Nb.

    The Design Report shows EQ. (D-8) in the Equations section of the Concrete Breakout Strength design parameters, and the calculated value for Nb using EQ. (D-8) in the Calculations section of the Concrete Breakout Strength design parameters.

  • Tension Concrete Breakout Strength

    15Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations NcbEquations Reference Comments

    ANc Ncb = _____ ed,Nc,Ncp,N Nb ANc0

    ACI 318-08, Part D.5.2.1(a) Equation (D-4) Equation used to calculate Nominal Concrete Breakout Strength (Ncb) for a single cast-in-place anchor or for a single post-installed anchor.

    The PROFIS Anchor Design Report shows EQ. (D-4) in the Equations section of the Concrete Breakout Strength design parameters.

    Equations NcbgEquations Reference Comments

    ANc Ncbg = _____ ec,Ned,Nc,N cp,N Nb ANc0

    ACI 318-08, Part D.5.2.1(b) Equation (D-5) Equation used to calculate Nominal Concrete Breakout Strength (Ncbg) for a group of cast-in-place anchors or for a group of post-installed anchors.

    The PROFIS Anchor Design Report shows EQ. (D-5) in the Equations section of the Concrete Breakout Strength design parameters.

    Equations Ncb or Ncbg versus NuaEquations Reference Comments

    Ncb or Ncbg Nua Strength Design compares a calculated Design Strength (Nn) to a Factored Service Load (Nua). ACI 318-08, Chapter 2 defines Nua as the factored tensile force applied to an anchor or group of anchors.

    PROFIS Anchor users select Strength Design provisions by clicking on the Loads tab, then highlighting and clicking on Strength Design according to ACI 318-08.

    A summary of tension Design Strengths versus tension Factored Service Loads is given in Part 3. Tension load of the Design Report.

  • Tension Concrete Breakout Strength

    16Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations cp,NEquations Reference Comments

    ca,min 1.5 hef cp,N = MAXIMUM _____ ; ______ 1.0 cac cac

    ACI 318-08, Part D.5.2.7: Equation (D-13) cp,N is the modification factor for splitting for anchors loaded in tension in uncracked concrete conditions. The critical edge distance for splitting, cac, corresponds to the edge distance needed to preclude splitting in uncracked concrete. cac is typically greater than the maximum assumed edge distance for Strength Design calculations in tension of 1.5 hef.

    cp,N is only calculated for post-installed anchors because splitting is a possible failure mode when post-installed anchors are installed near an edge.

    Splitting is not a typical failure mode for cast-in-place anchors; therefore, cp,N equals 1.0 for cast-in-place anchors.

    PROFIS Anchor calculates (1.5 hef/cac) using the value for hef input by the user and the value for cac given in the Evaluation Service Report for the anchor. It compares this calculation to (ca,min/cac) where ca,min is the smallest edge distance < 1.5 hef for the connection.

    The value for cp,N shown in the Design Report equals:

    MAX. {(ca,min/cac) ; (1.5 hef/cac)} < 1.0.

    EQ. (D-13) is shown in the Equations section of the Concrete Breakout Strength design parameters.

    The calculated value for cp,N is shown in the Calculations section of the Concrete Breakout Strength design parameters.

    Concrete cracks when tensile stresses in the concrete imposed by loads or restraint conditions exceed its tensile strength. Concrete is typically assumed to crack under normal service load conditions. Crack width and distribution are generally controlled through the use of reinforcement. With consideration for the protection of the reinforcing steel, crack widths are assumed to be less than approximately 0.012 in (0.3 mm). Under seismic loading, flexural crack widths corresponding to the onset of reinforcing yield are assumed to be approximately 1-1/2 x static crack width = 0.02" (0.5 mm). Both ACI 318 and the International Building Code assume cracked concrete as the baseline condition for the design of cast-in-place and post-installed anchors since the existence of cracks in the anchor vicinity can result in a reduced ultimate load capacity and increased displacement at ultimate load compared to uncracked concrete conditions. Design for uncracked concrete conditions is permitted only for cases where it can be shown that cracking of the concrete at service load levels will not occur over the anchor service life. For cases involving design for seismic actions, post-installed anchors must be prequalified for use in cracked concrete as well as for seismic loading.

    Select cracked or uncracked concrete conditions by clicking on the Base material tab then clicking on the drop down containing these options. Uncracked conditions are typically selected if it is assumed that the concrete will not develop cracks under service load conditions or the life of the anchorage.

  • Tension Concrete Breakout Strength

    17Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations ec,NEquations Reference Comments

    1 ec,N = ________

    2 eN'

    1 +

    ____

    3 hef

    ACI 318-08, Part D.5.2.4: Equation (D-9) ec,N is the modification factor for anchor groups loaded eccentrically in tension.

    The PROFIS Anchor Design Report shows EQ. (D-9) in the Equations section of the Concrete Breakout Strength design parameters, and the calculated value for ec,N in the Calculations section of the Concrete Breakout Strength design parameters.

    PROFIS Anchor calculates ec,N using the factored loads, anchor spacing and base plate dimensions input by the user. The program determines the load distribution among the anchors and identifies the anchors that are in tension. This information is utilized to calculate the tension eccentricity.

    Factored load values can be input directly on the main screen. Place the cursor over the appropriate load parameter, highlight it, and input the desired value. Click the Enter key to set the new value.

    Factored load values can also be input by clicking on the Loads tab, then clicking on the Enter loads icon.

    The PROFIS Anchor user can input the spacing parameters used to calculate ec,N directly on the main screen. Place the cursor over the appropriate spacing value, highlight it, and input the desired value. Click the Enter key to set the new value.

  • Tension Concrete Breakout Strength

    18Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations ec,n (continued)Equations Reference Comments

    Anchor spacing values can also be input by clicking on the Anchor Layout tab, then clicking on the Customize layout icon.

    Base plate dimensions can be input directly on the main screen. Place the cursor over the appropriate parameter, highlight it, and input the desired value. Click the Enter key to set the new value.

    NOTE: PROFIS Anchor is not intended to be used to design base plates. The dimensions input are used in conjunction with a rigid base plate assumption to determine load distribution among the anchors. Refer to the section on Base Plate Calculations for more information.

    Base plate dimensions can also be input by clicking on the Anchor plate tab. Input a value for base plate thickness in the box titled Plate thickness.

    NOTE: PROFIS Anchor is not intended to be used to design base plates. The thickness value input is assumed to be sufficient to transfer shear forces into the anchors. Refer to the section on Base Plate Calculations for more information.

    Click on the Customize geometry icon to input values for the base plate length and width.

  • Tension Concrete Breakout Strength

    19Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Equations ec,n (continued)Equations Reference Comments

    For a given load condition, anchor spacing and base plate dimensions input by the user; PROFIS Anchor calculates resultant loads acting on the connection. It uses a finite element program to determine the resultant axial loads.

    When part of the anchor/base plate connection is determined to be in tension and part in compression, PROFIS Anchor determines the location and magnitude of the resultant tension/compression forces acting on the anchors. The x/y-coordinates for the resultant tension and compression forces are given in Part 2. Load case/Resulting anchor forces of the Design Report. Part 2 shows the magnitude of the resultant tension and compression forces. It also denotes which anchors have been determined to be in tension, and the magnitude of force acting on each anchor in tension based on the location of the anchor from the resultant tension load and from the internally calculated neutral axis.

    Equations ed,NEquations Reference Comments

    ca,min ed,N = 0.7 + 0.3

    ______ 1.5 hef

    ACI 318-08, Part D.5.2.5: Equation (D-11) ed,N is the modification factor for edge effects for anchors loaded in tension.

    ed,N is included in the tension Nominal Concrete Breakout Strength calculation when the smallest edge distance (ca,min) is < 1.5 hef.

    The PROFIS Anchor Design Report shows EQ. (D-11) in the Equations section of the Concrete Breakout Strength design parameters, and the calculated value for ed,N in the Calculations section of the Concrete Breakout Strength design parameters.

  • Tension Concrete Breakout Strength

    20Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables Ca,min Variables Reference Comments

    ca,min ca,min corresponds to the minimum anchor edge distance for the connection. ca,min values for post-installed anchors are determined via testing and published in the ICC-ES Evaluation Service Report specific to the anchor.

    Values for cast-in-place anchors are based on ACI 318-08, Part D.8.2. PROFIS Anchor users can select edge distance criteria for torqued or untorqued conditions when designing cast-in-place anchors.

    The minimum edge distance for untorqued CIP anchors is defined in PROFIS Anchor as:

    = minimum cover + minimum rebar size + minimum CIP anchor diameter

    = 3/4" + 3/8" + 1/2" = 1.625"; rounded up to 1.75".

    Refer to 7.7.1 but disregard parameters for Shells and Folded Plate Members.ca,min for cast-in-place anchors

    ca,min for HIT-RE 500-SD adhesive anchor system

    D.8.2 Unless determined in accordance with D.8.4. minimum edge distances for cast-in headed anchors that will not be torqued shall be based on specified cover requirements for reinforcement in 7.7. For cast-in headed anchors that will be torqued the minimum edge distances shall be 6da.

    ESR-3013, Part 4.1.9:HY 150 MAX-SD

    ESR-2262, Part 4.1.9:HY 150 MAX-SD

    ESR-2322, Part 4.1.10:RE 500-SD

    When using adhesive anchors, edge distances less than the ca,min value published in the ICC-ES Evaluation Service Report can be used. An edge distance as small as 1.75 in can be used for all threaded rod diameters in a given adhesive anchor portfolio.

    Use of reduced edge distances also require use of a reduced installation torque to minimize concrete edge failure.

    Figure 5 Instructions for use (IFU) as provided with product packaging (continued)

    Refer to the Instructions For Use provided in each Evaluation Service Report for installation torque values.

    The information to the left was taken from ESR-3013 for HIT-HY 150 MAX-SD.

  • Tension Concrete Breakout Strength

    21Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables Ca,min (continued)Variables Reference Comments

    Edge distance values for adhesive anchor systems can be input such that:

    1.75 in edge distance < ca,min

    PROFIS Anchor will highlight edge distances less than ca,min in red. Any time a parameter is highlighted in red, it indicates that the value being input is outside the range of values programmed into PROFIS Anchor for that parameter. Post-installed anchor edge distance values are programmed to coincide with the ca,min values given in the Evaluation Service Report. Edge distance values < ca,min are therefore outside the range of ca,min. PROFIS Anchor will not permit calculations to be made until the value is changed so that it is within the range of values for that parameter, or until the user has signified their understanding that the edge distance being input requires a reduced installation torque. The Boundary Conditions in the Results pane will indicate which parameter is being violated.

    When an edge distance value < ca,min is input, it will be highlighted in red. Refer to the Messages in the Results pane. The user will be prompted to click on the Anchor layout tab, then go to the box titled Reduced Edge Distance, then check the box titled Reduced Installation Torque.

    Checking this box permits calculations to be made using the reduced edge distance. The edge distance value will revert to black on the PROFIS Anchor main screen. User's should keep in mind that Design Strengths calculated using reduced edge distances presume the anchors will be installed with the reduced installation torque given in the Evaluation Service Report for the selected anchor.

    The tool tip corresponding to reduced edge distances can be displayed by placing the cursor over the Reduced Installation Torque option. It will serve to remind users of the criteria for using reduced edge distance

  • Tension Concrete Breakout Strength

    22Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables Ca,min (continued)Variables Reference Comments

    Edge distance values are input by the user and PROFIS Anchor determines ca,min. The Design Report shows ca,min in the Variables section of the Concrete Breakout Strength design parameters.

    The edge distance parameters used to calculate ca,min can be input directly on the main screen. Place the cursor over the appropriate edge distance value, highlight it, and input the desired value.

    Click the Enter key to set the new value.

    Edge Distance values can also be input by clicking on the Base Material tab, then clicking on the Input geometry icon.

  • Tension Concrete Breakout Strength

    23Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables cacVariables Reference Comments

    cac

    Illustration references Section 4.1.10 in ICC-ES ESR-2322 for HIT RE 500-SD.

    cac corresponds to the critical edge distance required to develop the basic concrete breakout strength of a post-installed anchor in uncracked concrete without supplementary reinforcement to control splitting. It corresponds to the edge distance needed to minimize the potential of splitting in uncracked concrete.

    cac is typically greater than the maximum assumed edge distance for Strength Design calculations in tension of 1.5 hef.

    Splitting is only considered when using post-installed anchors because it is a possible failure mode when post-installed anchors are installed near an edge. cac is determined via testing and will be given in the ICC-ES Evaluation Service Report specific to an anchor.

    Splitting is not a typical failure mode for cast-in-place anchors; therefore, cac is not considered when using cast-in-place anchors.

    The PROFIS Anchor Design Report shows cac in the Variables section of the Concrete Breakout Strength design parameters.

    Variables e'c1,NVariables Reference Comments

    e' c1,N The value for e' c1,N corresponds to eccentricity in the x-direction and equals the distance in the x-direction between the resultant tension force and the centroid of the anchors that are in tension.

    The Design Report shows e' c1,N in the Variables section of the Concrete Breakout Strength design parameters.

    PROFIS Anchor determines e' c1,N using the factored loads, anchor spacing and base plate dimensions input by the user. The program determines the load distribution among the anchors and identifies the anchors that are in tension. This permits a determination of e' c1,N and the subsequent calculation of ec1,N.

  • Tension Concrete Breakout Strength

    24Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables e'c1,N (continued)Variables Reference Comments

    Factored load values can be input directly on the main screen. Place the cursor over the appropriate load parameter, highlight it, and input the desired value. Click the enter key to set the new value.

    Factored load values can also be input by clicking on the Loads tab, then clicking on the Enter loads icon.

    The spacing parameters used to calculate ec1,N can be input directly on the main screen. Place the cursor over the appropriate spacing value, highlight it, and input the desired value. Click the enter key to set the new value.

  • Tension Concrete Breakout Strength

    25Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables e'c1,N (continued)Variables Reference Comments

    Anchor spacing values can also be input by clicking on the Anchor Layout tab, then clicking on the Customize layout icon.

    Base plate dimensions can be input directly on the main screen. Place the cursor over the appropriate parameter, highlight it, and input the desired value. Click the enter key to set the new value.

    NOTE: PROFIS Anchor is not intended to be used to design base plates. The dimensions input are used in conjunction with a rigid base plate assumption to determine load distribution among the anchors. Refer to the section on Base Plate Calculations for more information.

    Base plate dimensions can also be input by clicking on the Anchor plate tab. Input a value for base plate thickness in the box titled Plate thickness.

    NOTE: PROFIS Anchor is not intended to be used to design base plates. The thickness value input is assumed to be sufficient to transfer shear forces into the anchors. Refer to the section on Base Plate Calculations for more information.

    Click on the Customize geometry icon to input values for the base plate length and width.

  • Tension Concrete Breakout Strength

    26Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables e'c1,N (continued)Variables Reference Comments

    14,091 lb (4.438, 0.000)

    PROFIS Anchor users can use the data given in the Design Report to determine how the software has calculated the eccentricity variable (ec1,N).

    The example shown to the left will be used to explain these calculations.

    The moment about the y-axis of 153,000 in-lb results in Anchors 1, 2, 4 and 5 being in tension. The resultant tension force of 14,091 lb is calculated using a finite element program.

    Refer to the section on Base Plate Calculations for more information on resultant load calculations.

    For the example shown, there are six anchors spaced 6 in apart in the x-direction and 5 in apart in the y-direction. The variable ec1,N corresponds to the tension eccentricity that is used in the equation to calculate the modification factor for eccentricity:

    ec,N = modification for eccentricity when calculating concrete breakout strength (Ncbg).

    Note: eccentricity is only considered for anchor groups.

    ec1,N is defined as the distance in the x-direction of the resultant tension load from the centroid of the anchors that are in tension.

    Per Part 2 of the Design Report, the resultant tension load (TR) is located 4.438 in from the center of the base plate in the +x direction. Likewise, only four of the six anchors in the connection are in tension. The centroid of the anchors that are in tension is located 3.000 in from the center of the base plate in the +x direction.

    The tension eccentricity in the x-direction (ec1,N ) = 1.438 in.

    Part 3, Tension load of the Design Report shows the values for tension eccentricity. Values are given for eccentricity in the x-direction and in the y-direction.

    The illustration to the left shows how PROFIS Anchor references the variables for tension eccentricity in the Design Report. Eccentricity in the x-direction is denoted as ec1,N . The Design Report shows ec1N in the Variables section of the Concrete Breakout Strength design parameters.

    If eccentricity in the y-direction exists, PROFIS Anchor denotes this value as ec2,N . The value for ec2,N equals the distance in the y-direction between the resultant tension force and the centroid of the anchors that are in tension.

  • Tension Concrete Breakout Strength

    27Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables ec2,NVariables Reference Comments

    e c2,N ACI 318-08, Part D.5.2.4 EQ (D-9) ec2,N corresponds to the tension eccentricity with respect to the y-direction. The PROFIS Anchor Design Report shows ec2,N in the Variables section of the Concrete Breakout Strength design parameters.

    PROFIS Anchor determines ec2,N using the factored loads, anchor spacing and base plate dimensions input by the user. The program determines the load distribution among the anchors and identifies the anchors that are in tension. This permits a determination of ec2,N and the subsequent calculation of ec2,N.

    Factored load values can be input directly on the main screen. Place the cursor over the appropriate load parameter, highlight it, and input the desired value.

    Click the enter key to set the new value.

    Factored load values can also be input by clicking on the Loads tab, then clicking on the Enter loads icon.

    The spacing parameters used to calculate ec2,N can be input directly on the main screen. Place the cursor over the appropriate spacing value, highlight it, and input the desired value. Click the enter key to set the new value.

  • Tension Concrete Breakout Strength

    28Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables ec2,N (continued)Variables Reference Comments

    Anchor spacing values can also be input by clicking on the Anchor Layout tab, then clicking on the Customize layout icon.

    Base plate dimensions can be input directly on the main screen. Place the cursor over the appropriate parameter, highlight it, and input the desired value. Click the enter key to set the new value.

    NOTE: PROFIS Anchor is not intended to be used to design base plates. The dimensions input are used in conjunction with a rigid base plate assumption to determine load distribution among the anchors. Refer to the section on Base Plate Calculations for more information.

    Base plate dimensions can also be input by clicking on the Anchor plate tab. Input a value for base plate thickness in the box titled Plate thickness.

    NOTE: PROFIS Anchor is not intended to be used to design base plates. The thickness value input is assumed to be sufficient to transfer shear forces into the anchors. Refer to the section on Base Plate Calculations for more information.

    Click on the Customize geometry icon to input values for the base plate length and width.

  • Tension Concrete Breakout Strength

    29Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables ec2,N (continued)Variables Reference Comments

    For a given load condition, anchor spacing and base plate dimensions input by the user; PROFIS Anchor calculates resultant loads acting on the connection. It uses a finite element program to determine the resultant axial loads.

    When part of the anchor/base plate connection is determined to be in tension and part in compression, PROFIS Anchor determines the location and magnitude of the resultant tension/compression forces acting on the anchors. The x/y-coordinates for the resultant tension and compression forces are given in Part 2. Load case/Resulting anchor forces of the Design Report. Part 2 shows the magnitude of the resultant tension and compression forces. It also denotes which anchors have been determined to be in tension, and the magnitude of force acting on each anchor in tension based on the location of the anchor from the resultant tension load and from the internally calculated neutral axis.

    The value for ec2,N corresponds to eccentricity in the y-direction and equals the distance in the y-direction between the resultant tension force and the centroid of the anchors that are in tension.

    The Design Report shows ec2,N in the Variables section of the Concrete Breakout Strength design parameters.

    PROFIS Anchor users can use the data given in the Design Report to determine how the software has calculated the eccentricity variable (ec2,N).

    The example shown to the left will be used to explain these calculations.

    The moment about the x-axis of 240,000 in-lb results in Anchors 1, 2, 4 and 5 being in tension. The resultant tension force of 11,676 lb is calculated using a finite element program.

    Refer to the section on Base Plate Calculations for more information on resultant load calculations.

  • Tension Concrete Breakout Strength

    30Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables ec2,N (continued)Variables Reference Comments

    For the example shown, there are six anchors spaced 8 in apart in the x-direction and 12 in apart in the y-direction. The variable ec2,N corresponds to the tension eccentricity that is used in the equation to calculate the modification factor for eccentricity:

    ec,N = modification for eccentricity when calculating concrete breakout strength (Ncbg).

    Note: eccentricity is only considered for anchor groups.

    ec2,N is defined as the distance in the y-direction of the resultant tension load from the centroid of the anchors that are in tension.

    Per Part 2 of the Design Report, the resultant tension load (TR) is located 8.592 in from the center of the base plate in the +y direction. Likewise, only four of the six anchors in the connection are in tension. The centroid of the anchors that are in tension is located 6.000 in from the center of the base plate in the +y direction.

    The tension eccentricity in the y-direction (ec2,N ) = 2.592 in.

    Part 3, Tension load of the Design Report shows the values for tension eccentricity. Values are given for eccentricity in the x-direction and in the y-direction.

    The illustration to the left shows how PROFIS Anchor references the variables for tension eccentricity in the Design Report. Eccentricity in the y-direction is denoted as ec2,N. The Design Report shows ec2N in the Variables section of the Concrete Breakout Strength design parameters.

    If eccentricity in the x-direction exists, PROFIS Anchor denotes this value as ec1,N. The value for ec1,N equals the distance in the x-direction between the resultant tension force and the centroid of the anchors that are in tension.

  • Tension Concrete Breakout Strength

    31Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables fc Variables Reference Comments

    fc ACI 318-08, Part D.3.5 and Commentary RD.3.5 fc corresponds to the concrete compressive strength that will be used in PROFIS Anchor calculations. The range of fc values in PROFIS Anchor is as follows:

    cast-in-place anchors: 2000 psi fc 10000 psi

    post-installed anchors: 2500 psi fc 8000 psi

    Refer to the ICC-ES Evaluation Service Report, for values specific to each anchor.

    The Design Report shows fc in the Variables section of the Concrete Breakout Strength design parameters.

    D.3.5 The values of fc used for calculation purposes in this appendix shall not exceed 10,000 psi for cast-in anchors and 8,000 psi for post-installed anchors. Testing is required for post-installed anchors when used in concrete with fc greater than 8,000 psi.

    cast-in-place anchors

    ESR-3013 for HIT-HY 150 MAX-SD

    5.0 CONDITIONS OF USE

    Users input a value for f'c by clicking on the Base Material tab, then clicking on the drop down box and selecting a value. Select Custom for compressive strengths other than those given in the drop down box. Type the desired value in the Compressive strength box. Click the Enter key to set the new value.

  • Tension Concrete Breakout Strength

    32Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables hef Variables Reference Comments

    hef ACI 318-08, Part D.5.2.1ACI 318-08, Part D.5.2.2ACI 318-08, Part D.5.2.3ACI 318-08, Part D.5.2.4ACI 318-08, Part D.5.2.5ACI 318-08, Part D.5.2.7

    hef is defined as the effective embedment depth of an anchor. This corresponds to the embedded portion of the anchor element that is effective in transmitting the tension load from the anchor into the concrete.

    The PROFIS Anchor Design Report shows hef in the Variables section of the Concrete Breakout Strength design parameters.

    corresponds to: [4d0 ; 20d0]

    PROFIS Anchor effective embedment depth values for cast-in-place anchors range from a minimum value of 4*anchor diameter to a maximum value of:

    MIN {20*anchor diameter ; 25 in}.

    The minimum value of 4*diameter corresponds to the minimum embedment noted for adhesive anchors per ICC-ES AC308, Annex A Part 1.2.2.3.

    The 20*diameter value is approximate and may vary slightly for some cast-in-place anchor sizes. It likewise corresponds to the maximum embedment noted for adhesive anchors per ICC-ES AC308, Annex A Part 1.2.2.4

    The 25 in value corresponds to the limit set in ACI 318-08, Part D.4.2.2.

    The Messages pane will alert users when embedment depth values outside the assumed range have been input. It will also note the embedment depth range for a given anchor diameter that can be used for PROFIS Anchor calculations.

    Check Results pane via the View tab to view real time calculation results as well as messages.

    Select Cast-In-Place for the anchor type via the Loads tab.

    Check Filter pane via the View tab then select an anchor type and diameter using the drop down that appears with the Filter pane on the left side of the main screen.

  • Tension Concrete Breakout Strength

    33Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables hef (continued)Variables Reference Comments

    Click on the Anchor Layout tab, then check Variable Embedment Depth and input an appropriate value for hef. Click the Enter key to set the new value.

    corresponds to: [4d0 ; 20d0]

    A 5/8" diameter anchor has been selected and an embedment depth = 18" input.

    PROFIS Anchor effective embedment depth values for adhesive anchors range from a minimum value of 4*anchor diameter to a maximum value of:

    MIN {20*anchor diameter ; 25 in}.

    The 4*diameter minimum value is approximate and may vary slightly for some anchor sizes. Minimum embedment is derived from testing and corresponds to the minimum embedment requirements noted for adhesive anchors per ICC-ES AC308, Annex A Part 1.2.2.3.

    The 20*diameter maximum embedment corresponds to the maximum embedment noted for adhesive anchors per ICC-ES AC308, Annex A Part 1.2.2.4

    The 25 in value corresponds to the limit set in ACI 318-08, Part D.4.2.2.

    The Messages pane will alert users when embedment depth values outside the assumed range have been input. It will also note the embedment depth range for a given anchor diameter that can be used for PROFIS Anchor calculations.

    Select Post-Installed for the anchor type via the Loads tab.

  • Tension Concrete Breakout Strength

    34Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables hef (continued)Variables Reference Comments

    Check Filter pane via the View tab then select an anchor type and diameter using the drop down that appears with the Filter pane on the left side of the main screen.

    Click on the Anchor Layout tab, then check Variable Embedment Depth and input an appropriate value for hef. Click the Enter key to set the new value.

    The value for hef when designing mechanical anchors is pre-determined for each anchor and embedment depths outside the pre-determined values cannot be used. Refer to the mechanical anchor ICC-ES Evaluation Service Report for embedment depths specific to that anchor.

    Select Post-Installed for the anchor type via the Loads tab.

    Check Filter pane via the View tab then select an anchor type, diameter and embedment depth using the drop down that appears with the Filter pane.

    The embedment depth range will be shown in the drop down for each mechanical anchor.

  • Tension Concrete Breakout Strength

    35Hilti. Outperform. Outlast.Hilti, Inc. (U.S.) 1-800-879-8000 www.us.hilti.com en espaol 1-800-879-5000 Hilti (Canada) Corp. 1-800-363-4458 www.hilti.ca

    Variables kcVariables Reference Comments

    kc ACI 318-08, Part D.5.2.2 EQ. (D-7)

    kc is defined as the coefficient for basic concrete breakout strength in tension.

    When using cast-in-place anchors, the value for kc will be taken = 24 for both cracked concrete conditions and uncracked concrete conditions. Modifications for uncracked concrete conditions will be made via the factor c,N.

    cracked and uncracked conditions

    D.5.2.2 The basic concrete breakout strength of a single anchor in tension in cracked concrete, Nb, shall not exceed Nb = kc fc hef1.5 (D-7)wherekc = 24 for cast-in anchors; andkc = 17 for post-installed anchors.

    The value of kc for post-installed anchors shall be permitted to increased above 17 based on ACI 355.2 product-specific tests, but shall in no case exceed 24.

    ESR-3013 for HIT-HY 150 MAX-SD

    When using post-installed anchors, kc is derived from testing. The value used in conjunction with Equation (D-7)