Hillyard Magnetic Bearing

download Hillyard Magnetic Bearing

of 56

Transcript of Hillyard Magnetic Bearing

  • 5/27/2018 Hillyard Magnetic Bearing

    1/56

    Joint Advanced Student School

    2006

    Jeff Hillyard

    Technische Universitt Mnchen

    Magnetic Bearings

  • 5/27/2018 Hillyard Magnetic Bearing

    2/56

    OverviewMagnetic Bearings

    Introduction

    Magnetism Review

    Active Magnetic Bearings Passive Magnetic Bearings

    Industry Applications

  • 5/27/2018 Hillyard Magnetic Bearing

    3/56

    IntroductionMagnetic Bearing Types

    Active/passive magnetic bearings electrically controlled

    no control system

    Radial/axial magnetic bearings

  • 5/27/2018 Hillyard Magnetic Bearing

    4/56

    IntroductionMotivations

    Advantages of magnetic bearings: contact-free

    no lubricant

    (no) maintenance tolerable against heat, cold, vacuum, chemicals

    low losses

    very high rotational speeds

    Disadvantages: complexity

    high initial cost

    Minimum Equipment for AMB

    Source: Betschon

  • 5/27/2018 Hillyard Magnetic Bearing

    5/56

    IntroductionSurvey of Magnetic Bearings

    Source: Schweitzer

  • 5/27/2018 Hillyard Magnetic Bearing

    6/56

    MagnetismMagnetic Field

    north polesouth pole

    magneticfield line

    iron filings

    Pole Transition

  • 5/27/2018 Hillyard Magnetic Bearing

    7/56

    MagnetismMagnetic Field

    Magnetic field, H, is found around a magnet or a currentcarrying body.

    r

    iH

    2

    idsH

    (for onecurrent loop)

    H

    i

    dsds

  • 5/27/2018 Hillyard Magnetic Bearing

    8/56

    MagnetismMagnetic Flux Density

    B = magnetic flux density

    = magnetic permeability

    H = magnetic field

    HB

    r 00= permeability of free space

    r= relative permeability

    1

    1

    diamagnetic

    paramagnetic

    ferromagnetic

    r

    niH

    2

    multiple loopsof wire, n

    1

    Meissner-Ochsenfeld Effect

  • 5/27/2018 Hillyard Magnetic Bearing

    9/56

    MagnetismB-H Diagram

    H

    B

    area within loop representshysteresis loss

    magnetic saturation

    Ferromagnetic: a material that can be magnetized

    HB

    Coercivity, Hc

    Remanence, Br

  • 5/27/2018 Hillyard Magnetic Bearing

    10/56

    MagnetismLorentz Force

    f = force

    Q = electric charge

    E = electric fieldV = velocity of charge Q

    B = magnetic flux density

    BvEQf

  • 5/27/2018 Hillyard Magnetic Bearing

    11/56

    MagnetismLorentz Force

    Simplification:

    BvQf

    Source: MIT Physics Dept. website

    BvEQf

  • 5/27/2018 Hillyard Magnetic Bearing

    12/56

    MagnetismLorentz Force

    Further simplification:

    Bif

    BvQf

    force perpendicular to flux!

    f

    i

    B

    Analogous Wire

  • 5/27/2018 Hillyard Magnetic Bearing

    13/56

    MagnetismReluctance Force

    VBHdVU

    21

    The energy in a magnetic field withlinear materials is given by:

    Force resulting from a difference between magnetic

    permeabilities in the presence of a magnetic field.

    force perpendicular to surface!

    2

    2

    ABf

    U = energy

    V = volume

    l

    Uf

  • 5/27/2018 Hillyard Magnetic Bearing

    14/56

    Aa

    slFe 2

    MagnetismReluctance Force

    V

    BHdVU

    2

    1

    Basic equation:

    sAHBVHBU aaaaaaa 22

    1

    2

    1

    Energy contained within airgap:

  • 5/27/2018 Hillyard Magnetic Bearing

    15/56

    MagnetismReluctance Force

    Evaluating the magnetic circuit for a simple system:

    nisHHlHds aFeFe 2

    NIniB

    sB

    lr

    Fe 00

    2

    sl

    NIB

    r

    Fe 2

    0

    aaFeFe ABAB

    BBBaFe

    Assumption:

    Aa

    slFe 2

  • 5/27/2018 Hillyard Magnetic Bearing

    16/56

    MagnetismReluctance Force

    Principle of virtual displacement:

    0

    BHa

    aa

    a ABHl

    Uf

    cos2

    2

    0 a

    rFe

    Asl

    nif

    2

    2

    s

    ikf

    0

    quadratic!

    inversely quadratic!

  • 5/27/2018 Hillyard Magnetic Bearing

    17/56

    Active Magnetic BearingsElements of System

    Electromagnet

    Rotor

    Sensor Controller

    Amplifier

  • 5/27/2018 Hillyard Magnetic Bearing

    18/56

    Active Magnetic BearingsForce Behavior

    Distance

    fs

    Force

    Distance

    fm

    Force

    2

    1~

    sx

    Magnetic Force Spring Force

    xs

    xs

  • 5/27/2018 Hillyard Magnetic Bearing

    19/56

    Active Magnetic BearingsForce Linearization

    Magnetic Force Spring Force

    fsfm2

    1~

    sx

    xs

    xs

    mg

    0x

    mg

    0x

  • 5/27/2018 Hillyard Magnetic Bearing

    20/56

    Active Magnetic BearingsForce Linearization

    Operating Point (constant current)

    xs

    fm

    xkf s

    x

    0x

    f

    xkf siism m

    0,

    x

    Redefining distance:

    0xxx s

    ks= force-displacement factor

  • 5/27/2018 Hillyard Magnetic Bearing

    21/56

    Active Magnetic BearingsForce Linearization

    ikf ixxim s

    0,im

    fm

    im0i

    2

    ~ mi

    mg

    fm

    im0i

    ikf i

    i

    0iii m

    ki= force-current factor

    Operating Point (constant position)

  • 5/27/2018 Hillyard Magnetic Bearing

    22/56

    Active Magnetic BearingsForce Linearization

    Linearized equation:

    00

    ,,, xximiism smffixf

    ikf ixxim s

    0,

    x

    im

    xkf siism m

    0,

    0iii m

    0xxx s

    ikxkixf is ,

    Not valid for:

    - rotor-bearing contact

    - magnetic saturation

    - small currents

  • 5/27/2018 Hillyard Magnetic Bearing

    23/56

    Active Magnetic BearingsClosed Control Loop

    Open Loop Equation: Basic System

    ikxkixf is ,

    Controller function?

    - Provide force,f

    Controller signals?

    - Input: position,x

    - Output: current, i

    i = i(x)

    x

    i

    x

    Artifical damping and stiffness:

    xdkxf x

    k d

  • 5/27/2018 Hillyard Magnetic Bearing

    24/56

    Active Magnetic BearingsClosed Control Loop

    Solving for controller function:Basic System

    xdkxikxk is

    x

    i

    x

    To model position of rotor:

    i

    s

    k

    xdxkkxi

    xmf Just like for the spring system!

  • 5/27/2018 Hillyard Magnetic Bearing

    25/56

    Active Magnetic BearingsClosed Control Loop

    System characteristics:

    with

    02 kdm

    x(t)

    ttCe

    j

    2

    2

    4m

    d

    m

    k

    m

    d

    2

    General solution for position:

    tCetx t cos

    Eigenfrequency:

    mk 220

  • 5/27/2018 Hillyard Magnetic Bearing

    26/56

    Active Magnetic BearingsClosed Control Loop

    Controller Abilities:1) k, d can be varied in controller

    2) air gap can be varied in controller

    3) specify position for different loads4) rotor balancing, vibrations, monitoring...

  • 5/27/2018 Hillyard Magnetic Bearing

    27/56

    Active Magnetic BearingsClosed Control Loop

    Linearization:

    cos4

    1 220

    s

    iAnf a

    cos2

    0

    2

    0

    2

    0

    2

    0

    xs

    ii

    xs

    iikfff xxx

    xss 0xss 0

    cos2

    2

    s

    ikf aAnk

    2

    04

    1

    magnetic force wasdetermined to be

    where

    Differential driving mode

  • 5/27/2018 Hillyard Magnetic Bearing

    28/56

    Active Magnetic BearingsClosed Control Loop

    Linearization:

    xx

    fi

    i

    ff

    x

    xx

    xx

    xx

    00

    xs

    kii

    s

    kif xx

    cos

    4cos

    43

    0

    2

    0

    2

    0

    0

    ik sk

    linearized fordifferential drivingmode

    Differential driving mode

  • 5/27/2018 Hillyard Magnetic Bearing

    29/56

    Radial Bearing Axial Bearing

    Active Magnetic BearingsBearing Geometry

  • 5/27/2018 Hillyard Magnetic Bearing

    30/56

    B circumferential torotor axis

    B parallel to rotor axis

    - similar to electromotors

    - rotor requires lamination

    - hysteresis loss low

    - lamination avoided

    Orientation:

    magnet pole pairs are often lined up with the principlecoordinate axes x and y (vertical and horizontal)

    control equations are simplified

    Active Magnetic BearingsBearing Geometry

  • 5/27/2018 Hillyard Magnetic Bearing

    31/56

    Active Magnetic BearingsSensors

    Position Sensor contact-free measure rotating surface

    surface quality

    homogeneity of surface material various values

    Other Sensors speed

    current flux density temperature

    + sensor

    other concerns:observabilityplacementcost

  • 5/27/2018 Hillyard Magnetic Bearing

    32/56

    Active Magnetic BearingsSensors

    Sensorless Bearing- calculate position- less equipment- lower cost

    Source: Hoffmann

  • 5/27/2018 Hillyard Magnetic Bearing

    33/56

    Active Magnetic BearingsAmplifier

    Converts control signals to control currents.

    Analog Amplifier:

    - simple structure

    - low power applications

    P

  • 5/27/2018 Hillyard Magnetic Bearing

    34/56

    Active Magnetic BearingsElectrical Response

    There is an inherent delay in the electrical system

    inductance

    voltage drops: and

    velocity within magnetic fieldinduces a voltage

    ku= voltage-velocity coefficient

    Total voltage drop:

  • 5/27/2018 Hillyard Magnetic Bearing

    35/56

    Active Magnetic BearingsControl Equations of Motion

    Block diagram with voltage control:

    fxm

    xk

    dt

    diLRiu u

    ikxkixf is ),(

    Source: Schweitzer

  • 5/27/2018 Hillyard Magnetic Bearing

    36/56

    Active Magnetic BearingsCurrent vs. Voltage Control

    Voltage Control:- more accurate model- better stability- low stiffness easier to realize

    - voltage amplifier often more convenient- possible to avoid using position sensor

    Current Control:- simple control plant description

    - simple PD or PID control

    Flux Control:- very uncommon

  • 5/27/2018 Hillyard Magnetic Bearing

    37/56

    Active Magnetic BearingsAddressing of Assumptions

    Uncertainties in bearing model- leakage flux outside of air gap- air gap is bigger than assumed- iron cross section is non-uniform

  • 5/27/2018 Hillyard Magnetic Bearing

    38/56

    Active Magnetic BearingsTypes of Losses

    Air Losses

    - air friction divide shaft into sections

    Copper Losses (Stator)

    - wire resistance Iron Losses (Rotor)

    - hysteresis (higher w/ switching amplifier)

    - eddy currents

    2iRP CuCu

  • 5/27/2018 Hillyard Magnetic Bearing

    39/56

    Active Magnetic BearingsCopper Losses

    For differential driving mode:

    2

    maxmax, 2 iRP CuCu

    nAKA dnn

    m

    nnCu

    l

    KAPNI

    2max,max

    An= slot areaKn= bulk factor

    = specific resistance

    lm= average length of turn

    limit of permissible mmf!

  • 5/27/2018 Hillyard Magnetic Bearing

    40/56

    Active Magnetic BearingsRotor Dynamics

    Areas of Consideration natural vibrations

    forward/backward whirl (natural vibrations)

    critical speeds nutation

    precession (change in rotation axis)

    Source: Wikipedia

  • 5/27/2018 Hillyard Magnetic Bearing

    41/56

    Active Magnetic BearingsRotor Dynamics

    rotor touch-down in retainer bearings- maintenance

    - sudden system shutoff

    - during system shutdownvery difficult to simulate

    cylindrical motion conical motion Source: Schweizer

  • 5/27/2018 Hillyard Magnetic Bearing

    42/56

    Active Magnetic BearingsRotor Stresses

    Radial

    Tangential

    2

    2

    222223

    8

    1r

    r

    rrrr aiair

    2

    2

    22222 3133

    8

    1r

    r

    rrrr aiait

    largest stress is at insideradius of disc with hole!

    Source: Schweizer

  • 5/27/2018 Hillyard Magnetic Bearing

    43/56

    Active Magnetic BearingsRotor Stresses

    Implications of max stress:max velocity (full disc)!

    3

    8

    max

    S

    a

    rv

    s= max tensile strength

    Material vmax (m/s)steel 576

    brass 376

    bronze 434

    aluminium 593titanium 695soft ferro. sheets 565

    Actual reached speeds (length 600 mm, dia. 45 mm):

    s

    mv 300max rpm000,120max

    Source: Schweizer

  • 5/27/2018 Hillyard Magnetic Bearing

    44/56

    Passive Magnetic BearingsPermanent Magnets

    Common Materials:1) neodymium, iron, boron (Nd Fe B)

    2) samarium, cobalt, boron

    (Sm Co, Sm Co B)3) ferrite

    4) aluminium, nickel, cobalt(Al Ni, Al Ni Co)

    Relative Sizes

    Issues:- material brittleness

    - varying space requirements (B-H)

    - operating temperatures(equal H at 10 mm)

  • 5/27/2018 Hillyard Magnetic Bearing

    45/56

    Passive Magnetic BearingsPermanent Magnets

    at least one degree offreedom unstable!

    increase in stiffness withmultiple rings

    caution:misalignment!

    reluctance bearings:

    - non-rotating magnets

    - resistance to radial

    displacement

  • 5/27/2018 Hillyard Magnetic Bearing

    46/56

    Passive Magnetic BearingsPermanent Magnets

    High Potential- economical

    - reliable

    - practical

    already replacing some active magnetic bearings- smaller size equipment and systems

    - systems with large air gaps

    Source: Boden

  • 5/27/2018 Hillyard Magnetic Bearing

    47/56

    ApplicationsTurbomolecular Pump

    cole Polytechnique Fdrale de Lausanne, Switzerland- eliminates complicated lubrication system- high temperature resistance- reduction of pollution

    - vibrations, noise, stresses avoided- improved monitoring (unbalances, defects, etc.)

    Status: suboptimal design overheating at load (> 550C) increase life span optimize fill factor reduce cost simplify manufacturing

  • 5/27/2018 Hillyard Magnetic Bearing

    48/56

    ApplicationsFlywheel (97)

    New Energy and Industrial Technology Development Organization(NEDO)Japans Ministry of International Trade and Industry (MITI)

    T=J2speed has larger influence than mass (better energy density)

    fiber-reinforced plastics for high strength

    fracture into small pieces upon failure above ground combination of superconductor and permanent magnet bearings (hsys= 84%)

  • 5/27/2018 Hillyard Magnetic Bearing

    49/56

    ApplicationsFlywheel (97)

    Current Development Goals (NEDO)

    increase load force

    reduce amount load force decrease with time (magnetic flux creep)

    reduce rotational loss

    increase size of bearings for larger systems

  • 5/27/2018 Hillyard Magnetic Bearing

    50/56

    ApplicationsMaglev Trains

    Maglev = Magnetic Levitation

    150 mm levitation over guideway trackundisturbed from small obstacles (snow, debris, etc.)

    typical ave. speed of 350 km/h (max 500 km/h)what if? Paris-Moscow in 7 hr 10 min (2495 km)!

    stator: track, rotor: magnets on train

    Source: DiscoveryChannel.com

  • 5/27/2018 Hillyard Magnetic Bearing

    51/56

    ApplicationsMaglev Trainsx

    Maglev in Shanghai

    - complete in 2004

    - airport to financial district (30 km)

    - worlds fastest maglev in commercial operation (501 km/h)- service speed of 430 km/h

    Source: www.monorails.org

  • 5/27/2018 Hillyard Magnetic Bearing

    52/56

    ApplicationsMaglev Trains

    Noise Reduction

    by FrequencyNoise Reduction

    by Speed

    Source: Moon

  • 5/27/2018 Hillyard Magnetic Bearing

    53/56

    Magnetic BearingsReferences

    1. Betschon, F. Design Principles of Integrated Magnetic Bearings, Diss. ETH. Nr. 13643, ETHZrich, 2000.

    2. Boden, K. & Fremerey, J.K. Industrial Realization of the SYSTEM KFA-JLICH PermanentMagnet Bearing Lines, Proceedings of MAG 92 Magnetic Bearings, Magnetic Drives and DryGas Seals Conference & Exhibition. Lancaster: Technomic Publishing, 1998.

    3. Electricity and Magnetism. Hyperphysics. Georgia State University, Dept. of Physics andAstronomy. 1 Apr. 2006 .

    4. Fremery, J.K. Permanentmagnetische Lager. Forshungszentrum Jlich, ZentralabteilungTechnologie, 2000.

    5. Hoffmann, K.J. Integrierte aktive Magnetlager, Diss. TU Darmstadt. Herdecke: GCA-Verlag 1999.

    6. Lsch, F. Identification and Automated Controller Design for Active Magnetic Bearing Systems,Diss. ETH. Nr. 14474, ETH Zrich, 2002.

    7. Maglev Monorails of the World: Shanghai, China. The Monorail Society Website. 1 Apr. 2006.

    8. Maglev Train Explained, DiscoveryChannel.ca. Bell Globemedia 2005.

    9. Magnetic Bearings & High Speed Motors, S2M. 1 Apr. 2006 .

  • 5/27/2018 Hillyard Magnetic Bearing

    54/56

    Magnetic BearingsReferences

    10. Moon, F.C. Superconducting Levitation: Applications to Bearings and Magnetic Transportation.New York: John Wiley & Sons, 1994.

    11. Research and Development for Superconducting Bearing Technology for Flywheel ElectricEnergy Storage System. New Energy and Industrial Technology Development Organization(NEDO). 1 Apr. 2006.

    12. Schwall, R. Power SystemsOther Applications: Flywheels. Power Applications ofSuperconductivity in Japan and Germany. WTEC Hyper-Librarian 1997.

    13. Schweizer, G., Bleuler, H., & Traxler, A.Active Magnetic Bearings: Basics, Properties andApplications of Active Magnetic Bearings. Zrich: Hochschulverlag AG an der ETH, 1994.

    14. Widbro, L. Magnetic Bearings Come of Age. Revolve Magnetic Bearings Inc. 2004.MachineDesign.com. 1 Apr. 2006

    .

    15. Wikipedia contributors (2006). Hysteresis. Wikipedia, The Free Encyclopedia. April 1, 2006.

    16. Wikipedia contributors (2006). Magnetic field. Wikipedia, The Free Encyclopedia. April 1, 2006.

  • 5/27/2018 Hillyard Magnetic Bearing

    55/56

    Questions?

  • 5/27/2018 Hillyard Magnetic Bearing

    56/56

    ApplicationsCrystal Growing System