High Performance ADCs for 5G · Wu, ISSCC 2016 4 GS/s 56dB SNDR 300mW Case study: Industry...

59
High Performance ADCs for 5G Benjamin Hershberg imec, Leuven, Belgium

Transcript of High Performance ADCs for 5G · Wu, ISSCC 2016 4 GS/s 56dB SNDR 300mW Case study: Industry...

  • High Performance ADCs for 5G

    Benjamin Hershberg

    imec, Leuven, Belgium

  • 5G NR FR2:ADC REQUIREMENTS

    Benjamin Hershberg High Performance ADCs for 5G 2 of 60

  • 5G Bandwidth Specs

    ◼ Channel: 50MHz, 100MHz, 200MHz, 400MHz

    ◼ Max. Aggregation: 800MHz

    ◼ Widest Band: 3.25GHz (24.25GHz – 27.50GHz)

    ◼ Agg. 28GHz Bands: 5.25GHz (24.25GHz – 29.50GHz)

    ...and need >1.5x more bandwidth to relax anti-alias filter.

    5G Modulation Specs

    ◼ QPSK, 16 QAM, 64 QAM, 256 QAM

    ◼ Future: 1024 QAM

    5G NR FR2: 3GPP specs

    Benjamin Hershberg High Performance ADCs for 5G 3 of 60

    [3GPP, 2019]

  • Translation into ADC specs depends heavily on system-level choices

    ◼ Receiver chain SNR budget

    ◼ % of standard supported

    Let’s see what we can do across the large range of likely 5G ADC specs:

    ◼ Resolution: 7 – 13 bits

    ◼ Speed: 400 MS/s – 12 GS/s

    ◼ Linearity: 65 dB – 85 dB SFDR

    (needs to cover Mobile-Terminal, Base-Station, etc...)

    5G NR FR2: ADC specs

    Benjamin Hershberg High Performance ADCs for 5G 4 of 60

  • CH

    AN

    NEL

    AG

    G.

    CH

    AN

    NEL

    BAN

    D

    5G NR FR2: ADC SoTA

    Benjamin Hershberg High Performance ADCs for 5G 5 of 60

    [Murmann, 2019]

  • Linearity SoTA

    Benjamin Hershberg High Performance ADCs for 5G 6 of 60

    [Murmann, 2019]CH

    AN

    NEL

    AG

    G.

    CH

    AN

    NEL

    BAN

    D

  • SFDR/THD specs can be harder than SNR specs!

    ◼ Noise power gets spread across large bandwidth

    ◼ Distortion power remains concentrated at specific frequencies

    Linearity considerations

    Benjamin Hershberg High Performance ADCs for 5G 7 of 60

    dB

    fS1/2

    dB

    fS2/2

    dB

    freqfS1/2 fS2/2

    Continuous-time input spectrum:

    Low speed ADC after sampling:

    High speed ADC after sampling:

  • Beamforming requires many ADCs

    ◼ Power efficiency

    ◼ Area efficiency

    Reconfigurability

    ◼ Large variation in required performance depending on mode (e.g. 50MHz vs. 800MHz BW)

    More considerations

    Benjamin Hershberg High Performance ADCs for 5G 8 of 60

    Vaz

    ISSCC

    2017

    Devarajan

    ISSCC

    2017

    Straayer

    ISSCC

    2016

    Wu

    ISSCC

    2016

    Ali

    VLSI 2016

    Architecture Pipe-SAR Pipeline Pipeline Pipeline Pipeline

    Sampling rate [Gsps] 4 10 4 4 5

    Technology [nm] 16 28 65 16 28

    ENOB Nyquist [bit] 9.2 8.8 8.9 9.0 9.3

    SFDR Nyquist [dB] 67.0 64 64.0 68.0 70

    Power [mW] 513 2900 2214 300 2300

    FoMWalden [fJ/c.step] 214 631 1130 145 709

    FoMSchreier [dB] 153 147 145 154 148

    Area [mm²] 1.04 20.2 11.0 0.34 14.4

    Industry SoTA

    500mW 4GS/s ADC in 0.5mm2

    x 128 element digital beam-forming= 64 Watts= 64 mm2

    An industrial solution today:

  • Case Study: MIMO Transceiver

    Benjamin Hershberg High Performance ADCs for 5G 9 of 60

    [Jann ISSCC 2019]

    ◼ First fully-integrated 5G TRX

    Modest ADC specs

    ◼ 400 MS/s

    ◼ 7.7 ENOB

    ◼ ...but ADC is still biggest slice of RX power!

    Many ADCs

  • High speed (400MS/s - 12GS/s)

    Medium resolution (7 - 13b)

    High linearity (65dB - 85dB)

    Low power

    Low area

    Conclusions: 5G NR FR2 requirements

    Benjamin Hershberg High Performance ADCs for 5G 10 of 60

    Industry SoTA can meet these specs...

    ...but not necessarily with acceptable power / area.

  • GETTING TO GIGA-SAMPLE SPEEDS

    Benjamin Hershberg High Performance ADCs for 5G 11 of 60

  • Two possible strategies:

    1. Fast single-channel

    Practical technology speed limits

    Many clocking overheads don’t scale w/ clock

    Limited architecture choices

    Giga-samples: how do we get there?

    Benjamin Hershberg High Performance ADCs for 5G 12 of 60

    2 GS/sVIN

  • Two possible strategies:

    1. Fast single-channel

    Practical technology speed limits

    Many clocking overheads don’t scale w/ clock

    Limited architecture choices

    2. Interleave several slower channels

    Interleave errors (spurs)

    Easy to correct: Offset, Gain

    Hard to correct: Skew, Bandwidth

    Larger input load to drive

    Larger area

    Giga-samples: how do we get there?

    Benjamin Hershberg High Performance ADCs for 5G 13 of 60

    2 GS/sVIN100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/s

    100 MS/sVIN

  • Combine both strategies

    ◼ First: maximize channel speed

    ◼ Then: interleave as necessary

    Giga-samples: how do we get there?

    Benjamin Hershberg High Performance ADCs for 5G 14 of 60

    2 GS/sVIN1 GS/s

    1 GS/sVIN

    Core mission statement:

    Maximize per-channel speed!

  • Pipelining

    ◼ Appears in all medium/high resolution giga-sample ADCs

    ◼ Break task into smaller pieces

    ◼ Pass incomplete result along for more processing

    Minimize # of operations in critical timing path

    ◼ Sample

    ◼ Quantize

    ◼ Amplify

    Pipelining

    Benjamin Hershberg High Performance ADCs for 5G 15 of 60

    Stage 2Stage 1 Stage 3 Stage 4 Backend

    3 3 3 3 4

    VIN

    Time Alignment & Digital Error Correction12

    DOUT

    3b flash sub-ADC

    3

    T/H Σ x4

    3b sub-DAC

    VIN VRES

    DOUT

    Example 3b/stage Pipelined ADC

    • 2b/stage of quantization• 1b/stage of redundancy (error correction)

  • Case study: Deep Pipeline

    Benjamin Hershberg High Performance ADCs for 5G 16 of 60

    1.5b/stage Flash ADC Quantizer

    ☺ Fast! Minimum set of actions per stage

    Many stages / residue amplifiers

    [Wu, ISSCC 2016]

    System 4 GS/s

    Channel 1 GS/s

    SNDR 56 dB

    SFDR 68 dB

    Power 300 mW

    FoMW 146 fJ/cs

  • Case study: Pipelined SAR

    Benjamin Hershberg High Performance ADCs for 5G 17 of 60

    SAR as a sub-ADC

    ☺ Fewer stages / amplifiers

    ☺ Power efficient sub-ADC

    Slower channel speed

    [Vaz, ISSCC 2017]

    System 4 GS/s

    Channel 500 MS/s

    SNDR 57 dB

    SFDR 67 dB

    Power 513 mW

    FoMW 214 fJ/cs

    16nm

    Area = 1mm2

  • Fast frontend, slower backend

    ☺ Fast frontend minimizes interleave factor

    ☺ Interleaved SARs improve backend efficiency

    Frontend amplifiers still power-hungry

    Case study: Hybrid Pipeline

    Benjamin Hershberg High Performance ADCs for 5G 18 of 60

    [Brandolini, JSSC 2015]

    System 5 GS/s

    Channel 2.5 GS/s

    SNDR 52 dB

    SFDR 58 dB

    Power 150 mW

    FoMW 96 fJ/cs

  • AMPLIFICATION: THE HIDDEN BOTTLENECK

    Benjamin Hershberg High Performance ADCs for 5G 19 of 60

  • Pipelining requires passing along analog residues

    To go high speed, you need good amplifiers!

    Amplification

    Benjamin Hershberg High Performance ADCs for 5G 20 of 60

    Stage 2Stage 1 Stage 3 Stage 4 Backend

    3 3 3 3 4

    VIN

    Time Alignment & Digital Error Correction12

    DOUT

    3b flash sub-ADC

    3

    T/H Σ x4

    3b sub-DAC

    VIN VRES

    DOUT

  • Class-A opamps in nanoscale CMOS

    Not enough voltage headroom

    Poor efficiency / technology scaling

    Requires a special high-voltage supply

    Eliminates all hope of high efficiency

    But lacking better options, this is still what many in industry use...

    Case study: Industry Gigasample ADCs

    Benjamin Hershberg High Performance ADCs for 5G 21 of 60

    [Ali, JSSC 2014]

    2.5V

  • Wu, VLSI 2013

    ◼ 5.4GS/s

    ◼ 52dB SNDR

    ◼ 500mW

    Brandolini, JSSC 2015

    ◼ 5GS/s

    ◼ 52dB SNDR

    ◼ 150mW

    Wu, ISSCC 2016

    ◼ 4 GS/s

    ◼ 56dB SNDR

    ◼ 300mW

    Case study: Industry Gigasample ADCs

    Benjamin Hershberg High Performance ADCs for 5G 22 of 60

    • All 3 ADCs use the same residue amplifier on 1.8V

    • Core circuits on 1.4V/0.4V

    [Wu, VLSI 2013]

    Fs 5.4 GS/s

    SNDR 52 dB

    Power 500 mW

    [Brandolini, JSSC 2015]

    Fs 5 GS/s

    SNDR 52 dB

    Power 150 mW

    [Wu, ISSCC 2016]

    Fs 4 GS/s

    SNDR 56 dB

    Power 300 mW

  • Wu, VLSI 2013

    ◼ 5.4GS/s

    ◼ 52dB SNDR

    ◼ 500mW

    Wu, ISSCC 2016

    ◼ 4 GS/s

    ◼ 56dB SNDR

    ◼ 300mW

    Brandolini, JSSC 2015

    ◼ 5GS/s

    ◼ 52dB SNDR

    ◼ 150mW

    Case study: Industry Gigasample ADCs

    Benjamin Hershberg High Performance ADCs for 5G 23 of 60

    8 high-performance amps

    2 high-performance amps

    2 high-performance amps14 low-performance amps

    [Wu, VLSI 2013]

    Fs 5.4 GS/s

    SNDR 52 dB

    Power 500 mW

    [Brandolini, JSSC 2015]

    Fs 5 GS/s

    SNDR 52 dB

    Power 150 mW

    [Wu, ISSCC 2016]

    Fs 4 GS/s

    SNDR 56 dB

    Power 300 mW

  • Amplification: The Hidden Bottleneck

    Benjamin Hershberg High Performance ADCs for 5G 24 of 60

    Architectural Freedom

    Calibration Complexity

    Power Efficiency

    Linearity

    Performance

    Input Swing

    High Voltage Supply

    Amplifier Bottleneck

    Architectural Freedom

    Output Swing

  • Class-A opamps will never be good in scaled CMOS

    ◼ Severely constrains ADC design freedoms

    ◼ 2010’s were the era of the (amplifier-less) SAR ADC

    A new approach is needed!

    Conclusions: Amplifier Bottleneck

    Benjamin Hershberg High Performance ADCs for 5G 25 of 60

  • EMERGING AMPLIFICATION SOLUTIONS

    Benjamin Hershberg High Performance ADCs for 5G 26 of 60

  • Open loop

    Gm-C integrator

    Gm-R amplifier

    ◼ Charge-pump based

    Feedback

    Ring amplifier

    ◼ Zero-crossing based circuit

    ◼ Charge-steering amplifier

    ◼ Digital amplifier

    Emerging Amplification Solutions

    Benjamin Hershberg High Performance ADCs for 5G 27 of 60

    Found in state-of-the-art Gigasample ADCs

  • Amplifier Wishlist

    Benjamin Hershberg High Performance ADCs for 5G 28 of 60

  • Basic idea: Integrate current GmVRES onto load capacitor

    ☺ Fast (open-loop)

    ☺ Fully dynamic (switchable)

    ☺ Inherent filtering (sinc)

    ☺ Good efficiency

    Poor linearity

    Small input swing

    Small output swing

    Sensitive to jitter

    Sensitive to PVT

    Gm-C integrator

    Benjamin Hershberg High Performance ADCs for 5G 29 of 60

    GmVRES

    ΦA

    VRES

    ΦR

    VOUT

    CLGm

    ΦA

    tR tA

    VO

    UT

    time

    Gm · taCL

    AV =

  • Case Study: Gm-C Integrator

    Benjamin Hershberg High Performance ADCs for 5G 30 of 60

    Channel:

    Gm-C:

    [Vaz, ISSCC 2017]

    System 4 GS/s

    Channel 500 MS/s

    SNDR 57 dB

    SFDR 67 dB

    Power 513 mW

    FoMW 214 fJ/cs

    Tunable integration time:

  • Gm-R amplifier

    Benjamin Hershberg High Performance ADCs for 5G 31 of 60

    Basic idea: RC settle voltage GmVRESRL across load capacitor

    ☺ Even faster! (no pre-clearing)

    ☺ Fully dynamic (switchable)

    ☺ Good efficiency

    Moderate PVT sensitivity

    Poor linearity

    Small input swing

    Small output swing

    tA

    VO

    UT

    time

    GmVRESVRES VOUT

    CLGm

    ΦA

    RL

    AV = Gm · RL

  • Case study: Gm-R Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 32 of 60

    [Jiang, ISSCC 2019]

    System 1 GS/s

    Channel 1 GS/s

    SNDR 60 dB

    SFDR 75 dB

    Power 8 mW

    FoMW 9 fJ/cs

    Current SoTA for single-channel gigasample ADCs

  • CLOAD

    OUTmINp

    feedback

    VDZ

    Ring Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 33 of 60

    Basic idea: Start in a high efficiency but unstable state and then dynamically stabilize with large-signal feedback

    [Hershberg, JSSC 2012]

    ☺ High efficiency

    ☺ High speed

    ☺ Wide output swing

    ☺ Excellent linearity

    ☺ Scales with digital

    ☺ Fully dynamic (switchable)

    Moderate PVT sensitivity [Lagos, JSSC 2019]

    [Lim, JSSC 2015 (1)]

  • Ring Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 34 of 60

    CLOAD

    OUTmINp

    feedback

    VDZ

    p1

    p2

    p3

    p2

    Transient, large signal paradigm

    The AC view

    ◼ Make p1 & p2 as fast as possible

  • Ring Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 35 of 60

    CLOAD

    OUTmINp

    feedback

    VDZ

    p1

    p2

    p3

    p2

    Transient, large signal paradigm

    The AC view

    ◼ Make p1 & p2 as fast as possible

    ◼ Dynamically reduce p3

  • Ring Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 36 of 60

    CLOAD

    OUTmINp

    feedback

    VDZ

    p1

    p2

    p3

    p2

    Transient, large signal paradigm

    The AC view

    ◼ Make p1 & p2 as fast as possible

    ◼ Dynamically reduce p3

    ◼ ring oscillator → ring amplifier

  • Ring Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 37 of 60

    CLOAD

    OUTmINp

    feedback

    VDZp3

    VOV

    VOV

    Transient, large signal paradigm

    The DC / transient view

    ◼ VOV initially maximum

    Slew-rate at theoretical max. ☺

  • Ring Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 38 of 60

    Transient, large signal paradigm

    The DC / transient view

    ◼ VOV initially maximum

    Slew-rate at theoretical max. ☺

    ◼ VOV dynamically reduced to adjust P3

    Reduces VDSAT → swing/linearity ☺

    Increases ro → gain/linearity ☺

    Reduces gm → noise filtering ☺

    CLOAD

    OUTmINp

    feedback

    VDZp3

    VOV

    VOV

  • [Hershberg, ISSCC 2019 (1)]

    System 3.2 GS/s

    Channel 800 MS/s

    SNDR 63 dB

    SFDR 80 dB

    Power 61.3 mW

    FoMW 19 fJ/cs

    Case study: Ring Amplifier

    Benjamin Hershberg High Performance ADCs for 5G 39 of 60

    VDD

    DZP

    EN

    DZN

    VSS

    EN_i

    EN_i

    EN

    EN

    OUTm

    INp

    VDD

    DZP

    EN

    DZN

    VSS

    EN_i

    EN_i

    EN

    EN

    OUTp

    INm

    EN

    VDDEN

    Vs2p2

    Vs2m2

    Vs2p1

    Vs2m1

    VDD

    VSS

    MCM2

    OUTp

    B1

    CFB

    CSMALLCBIG

    ENCSENSE

    EN_i

    EN_iEN_i

    Trapped Charge CMFB

    Dz_nmos[7:0]7

    VDD DZN

    EN

    Dz_pmos[7:0]7

    VSS DZP

    EN

    Trapped-Charge Bias Control

    CFBOUTm

    CSENSE

    MCM1

    Order-of-magnitude improvement in SoTA

    36 ringamps in system

    ◼ Bottleneck solved?

  • Option 1: Design with extra margin

    ☺ Calibration free

    Requires some sacrifice in speed

    Still can achieve SoTA performance

    ◼ 3 stage ringamp [Lim, JSSC 2015 (2)]

    ◼ 4 stage ringamp [Lim, VLSI 2017]

    Ringamp Robustness Techniques

    Benjamin Hershberg High Performance ADCs for 5G 40 of 60

    [Lim, JSSC 2015]

  • Option 2: Use background tracking or calibration techniques

    ☺ Optimum performance

    Extra analog/digital complexity

    Ringamp Robustness Techniques

    Benjamin Hershberg High Performance ADCs for 5G 41 of 60

    AOL

    β

    +IN OUTX+ -

    +‒

    v/σ

    PIP

    ELINE

    B

    ACK

    END

    “bin” 1

    “bin” N

    estimator equations

    𝐷 𝑉𝑥

    𝐷 𝑉𝑥 𝐷 𝑉𝑜𝑢𝑡

    bias control

    VCM

    v/σ factor estimation

    1σ = 0.3 mV

    𝑆𝐷𝑅

    mean erfinv x

    mean erfinv x

    mean erfinv x

    mean erfinv x

    cal ADC

    mux

    demux

    𝐴 𝑂𝐿

    𝑆𝐷𝑅 𝑉𝑂𝑈𝑇 ,𝑉𝑋

    𝐴𝑂𝐿 𝑉𝑂𝑈𝑇 ,𝑉𝑋

    [Hershberg, ISSCC 2019 (1)]

  • Open-loop where it makes sense

    ◼ E.g. for very fast amplification

    Ringamps for everything else

    ◼ Any input swing, any output swing

    ◼ Any resolution, any speed

    ◼ All circuits: ADC, VGA, Filter, PLL, etc.

    Conclusion: Emerging Amplification

    Benjamin Hershberg High Performance ADCs for 5G 42 of 60

    GmVRESVRES VOUT

    CLGm

    ΦA

    RL

    CLOAD

    OUTmINp

    feedback

    VDZ

  • DESIGNING FORRECONFIGURABILITY

    Benjamin Hershberg High Performance ADCs for 5G 43 of 60

  • Wide range of channel bandwidths and modulations:

    5G Bandwidth Specs

    ◼ Channel: 50MHz, 100MHz, 200MHz, 400MHz

    ◼ Max. Aggregation: 800MHz

    ◼ Widest Band: 3.25GHz (24.25GHz – 27.50GHz)

    ◼ Agg. 28GHz Bands: 5.25GHz (24.25GHz – 29.50GHz)

    5G Modulation Specs

    ◼ QPSK, 16 QAM, 64 QAM, 256 QAM

    ◼ Future: 1024 QAM

    ➔ A reconfigurable multi-standard ADC is a clear advantage

    5G NR FR2 specs revisited

    Benjamin Hershberg High Performance ADCs for 5G 44 of 60

  • Run-time

    Speed

    ◼ Resolution

    Design-time

    Architecture

    ADC Reconfigurability

    Benjamin Hershberg High Performance ADCs for 5G 45 of 60

    = most relevant for 5G

    Speed Reconfigurability

    [Hershberg, ISSCC 2019 (2)]

  • Motivation: constant power efficiency

    2 ingredients required

    ◼ Event-driven control (clocking)

    ◼ Fully-dynamic power consumption

    Fully-dynamic = no static power

    “Next-gen” amplifiers support this

    ◼ Gm-C

    ◼ Gm-R

    ◼ Ringamp

    Speed Reconfigurability

    Benjamin Hershberg High Performance ADCs for 5G 46 of 60

    Ringamp with power-gating function

    [Lagos, JSSC 2019]

  • Conventional: Synchronous 2-phase non-overlapping clock tree

    ◼ Simple & effective at lower speeds

    ◼ But many hidden drawbacks at high speed

    With improvements in amplification tech., clocking becomes the new bottleneck

    Event-Driven Control: Deep Pipeline

    Benjamin Hershberg High Performance ADCs for 5G 47 of 60

    Phase 1 delayed

    Phase 2 delayed

    Phase 1

    Phase 2

    cINpSTG1

    INm

    c

    Local Clkgen

    STG2

    Local Clkgen

    STG3

    Local Clkgen

    STG4

    Local Clkgen

    STG5

    Local Clkgen

    STG6

    Local Clkgen

    BACKEND

    Local Clkgen

    c

    master clock

    Global Clkgen

    [Lagos, CICC 2017]

  • Local “Stage Control Units” connected by inter-stage control busses

    ◼ Communication

    ◼ Driving local circuits

    ☺ Correct-by-construction

    ☺ Minimal global routing

    ☺ Interleaving advantages

    ☺ Less sampling jitter

    ☺ Faster (less timing overhead)

    Event-Driven Control: Deep Pipeline

    Benjamin Hershberg High Performance ADCs for 5G 48 of 60

    [Hershberg, ISSCC 2019 (2)]

    VCM

    1.5bsub-ADC

    DOUT[1:0]

    subRingamp+

    -Ringamp+

    -

    sub-ADC latch

    sample REQ sample REQ

    1.5bsub-DAC

    track N

    track early N

    flush REQ

    stagecontrol

    unittrack early N+1 (ACK)track early N (ACK)

    flush ACK

    stagecontrol

    unit

    STAGE N+1STAGE N

    VCM

    STAGE N-1

    amplify N

    sub-ADC latch

    flush ACKcINp STG1

    1.5b

    CU=64fF

    STG21.5b

    CU=32fF

    c

    master clock

    BACKEND1.5b + 3b

    CU=32fF

    STG31.5b

    CU=32fF

    STG41.5b

    CU=32fF

    STG51.5b

    CU=32fF

    STG61.5b

    CU=32fF

    STG71.5b

    CU=32fF

    INm

    c

  • Internal “chain-reaction” of processing is independent of external clock rate

    ◼ 1MS/s same as 1GS/s

    ☺ Enables fully-dynamic operation

    ☺ Auto maximizes track time

    ☺ Removes many leakage issues

    Event-Driven Control: Deep Pipeline

    Benjamin Hershberg High Performance ADCs for 5G 49 of 60

    [Hershberg, ISSCC 2019 (2)]

    trackquantize

    amplify track

    trackquantize

    amplify track

    . . . .

    . . . .

    trackquantize

    amplify

    Conventional

    clkmax

    clkmax / 2

    trackquantize

    amplify track

    trackquantize

    amplify track

    . . . .

    . . . .

    trackquantize

    amplifyclkmax

    clkmax / 2

    Event-driven

    Analog data enters Analog data exits

    Analog data enters Analog data exits

    window expands

    constant

  • ☺ More efficient (less power)

    ☺ Reconfigurable behavior

    ☺ No limit to # of clocks/phases

    Must be careful about deadlocks

    Validation effort increased

    Event-Driven Control: Deep Pipeline

    Benjamin Hershberg High Performance ADCs for 5G 50 of 60

    [Hershberg, ISSCC 2019 (2)]

  • ** Sneak Peek! **

    General-purpose solution

    ◼ Discrete-time comparator-based

    [Kull, JSSC 2013]

    ◼ Can sub-divide into dirty/clean replicas for low-noise and high-accuracy

    ☺ Low power

    ☺ General purpose

    Still requires some decap area

    Fully Dynamic Reference Regulation

    Benjamin Hershberg High Performance ADCs for 5G 51 of 60

    c

    c

    master clock

    INm

    c

    INp

    c

    VREFP ext. c

    VCM ext. c

    VREFM ext.

    VREFP dirtyVREFP cleanVCMVREFM dirtyVREFM clean

    reference regulator

    BACKEND1.5b + 3b

    CTOT=256fF

    STG11.5b

    CTOT=256fF

    STG21.5b

    CTOT=128fF

    STG31.5b

    CTOT=128fF

    STG41.5b

    CTOT=128fF

    STG51.5b

    CTOT=128fF

    STG61.5b

    CTOT=128fF

    STG71.5b

    CTOT=128fF

    Deep pipeline with dirty/clean reference replicas:

    VDD

    precharge_i

    CP

    VSS

    precharge

    CM

    Charge source / sink

    CR

    VREF_extprecharge

    +

    replica out

    connect

    connect_i

    Discrete-time regulation circuit:

  • Design-time circuit re-use

    ◼ Faster time-to-market

    ◼ Less manpower

    Simple, low resolution stages

    ◼ Use “cheap” high performance amplifiers

    ◼ Can simply “chain” together using asynchronous, event-driven control protocols

    Architecture Reconfigurability

    Benjamin Hershberg High Performance ADCs for 5G 52 of 60

    STG21.5b

    CU = 128fF

    STG31.5b

    CU = 64fF

    STG41.5b

    CU = 32fF

    BACKEND9b

    CU = 32fF

    Inventory of low-resolution, fully-dynamic building blocks

    BACKEND9b

    CU = 32fF

    9

    c

    VINSTG31.5b

    CU = 64fF

    c

    clk

    2c

    STG41.5b

    CU = 32fF

    2DOUT

    13b ADC (x4)for Base-station Applications[Hershberg, ISSCC 2019 (1)]

    STG11.5b

    CU = 200fF

    BACKEND9b

    CU = 32fF

    9

    c

    VIN STG21.5b

    CU = 128fF

    STG31.5b

    CU = 64fF

    c

    clk

    2 2 2c

    STG11.5b

    CU = 200fF

    STG41.5b

    CU = 32fF

    2DOUT

    11b ADCfor Mobile-terminal Applications[Hershberg, ISSCC 2019 (2)]

    Easily adapted to many resolution &

    speed requirements

  • SUMMARY & CONCLUSION

    Benjamin Hershberg High Performance ADCs for 5G 53 of 60

  • Final Summary

    Benjamin Hershberg High Performance ADCs for 5G 54 of 60

    1 GS/s

    1 GS/s

    1 GS/s

    1 GS/s

    1 GS/s

    VIN

    For best performance at high speeds:

    First maximize the per-channel speed...

    ...then interleave as necessary

  • Final Summary

    Benjamin Hershberg High Performance ADCs for 5G 55 of 60

    1 GS/s

    Pipelining can maximize the per-channel speed

    BACKEND9b

    CU = 32fF

    9

    c

    VIN STG21.5b

    CU = 128fF

    STG31.5b

    CU = 64fF

    c

    clk

    2 2 2c

    STG11.5b

    CU = 200fF

    STG41.5b

    CU = 32fF

    2DOUT

    But it isamplifier intensive!

    Luckily, new amplification techniques

    are now available

    CLOAD

    OUTmINp

    feedback

    VDZ

    Ringamp

  • Final Summary

    Benjamin Hershberg High Performance ADCs for 5G 56 of 60

    ADC Reconfigurability

    Run-time

    Constant energy per conversion for multi-standard use Asynchronous-

    event driven timing control

    Fully dynamic power use

    Design-time

    Building block reuse for reduced

    design effort

    Enablers:

  • Closing the Gap

    Benjamin Hershberg High Performance ADCs for 5G 57 of 60

    Industry SoTA R&D SoTA

    Top Level

    CH0

    CH1

    DOUT[N:0]

    CH2

    CH3

    D0[N:0]

    D1[N:0]

    D2[N:0]

    D3[N:0]

    CLKIN

    controller mux

    BU

    F

    VINBUF

    Vaz

    ISSCC

    2017

    Devarajan

    ISSCC

    2017

    Straayer

    ISSCC

    2016

    Wu

    ISSCC

    2016

    Ali

    VLSI 2016

    Architecture Pipe-SAR Pipeline Pipeline Pipeline Pipeline

    Sampling rate [Gsps] 4 10 4 4 5

    Technology [nm] 16 28 65 16 28

    ENOB Nyquist [bit] 9.2 8.8 8.9 9.0 9.3

    SFDR Nyquist [dB] 67.0 64 64.0 68.0 70

    Power [mW] 513 2900 2214 300 2300

    FoMWalden [fJ/c.step] 214 631 1130 145 709

    FoMSchreier [dB] 153 147 145 154 148

    Area [mm²] 1.04 20.2 11.0 0.34 14.4

    Hershberg

    ISSCC

    2019

    Architecture Pipeline

    Sampling rate [Gsps] 3.2

    Technology [nm] 16

    ENOB Nyquist [bit] 10.0

    SFDR Nyquist [dB] 73.3

    Power [mW] 61

    FoMWalden [fJ/c.step] 19

    FoMSchreier [dB] 166

    Area [mm²] 0.194

    Coming soon, to a product near you...

  • References (1)

    Benjamin Hershberg High Performance ADCs for 5G 58 of 60

    3GPP, 2019 3GPP, “5G NR release 15”, 2019. [Online]. Available: https://www.3gpp.org/release-15

    Ali, JSSC 2014A. M. A. Ali et al., "A 14 Bit 1 GS/s RF Sampling Pipelined ADC With Background Calibration," in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2857-2867, Dec. 2014.

    Brandolini, JSSC 2015M. Brandolini et al., "A 5 GS/s 150 mW 10 b SHA-Less Pipelined/SAR Hybrid ADC for Direct-Sampling Systems in 28 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2922-2934, Dec. 2015.

    Hershberg, ISSCC 2019 (1)B. Hershberg et al., "3.1 A 3.2GS/s 10 ENOB 61mW Ringamp ADC in 16nm with Background Monitoring of Distortion," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 58-60.

    Hershberg, ISSCC 2019 (2)B. Hershberg et al., "3.6 A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 68-70.

    Hershberg, JSSC 2012B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita and U. Moon, "Ring Amplifiers for Switched Capacitor Circuits," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2928-2942, Dec. 2012.

    Jann, ISSCC 2019B. Jann et al., "21.5 A 5G Sub-6GHz Zero-IF and mm-Wave IF Transceiver with MIMO and Carrier Aggregation," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 352-354.

    Jiang, ISSCC 2019W. Jiang, Y. Zhu, M. Zhang, C. Chan and R. P. Martins, "3.2 A 7.6mW 1GS/s 60dB SNDR Single-Channel SAR-Assisted Pipelined ADC with Temperature-Compensated Dynamic Gm-R-Based Amplifier," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA,

    Kull, JSSC 2013L. Kull et al., "A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS," in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3049-3058, Dec. 2013.

  • References (2)

    Benjamin Hershberg High Performance ADCs for 5G 59 of 60

    Lagos, CICC 2018J. Lagos, B. Hershberg, E. Martens, P. Wambacq and J. Craninckx, "A 1Gsps, 12-bit, single-channel pipelined ADC with dead-zone-degenerated ring amplifiers," 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, 2018, pp. 1-4.

    Lagos, JSSC 2019J. Lagos, B. P. Hershberg, E. Martens, P. Wambacq and J. Craninckx, "A 1-GS/s, 12-b, Single-Channel Pipelined ADC With Dead-Zone-Degenerated Ring Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 646-658, March 2019.

    Lim, JSSC 2015 (1)Y. Lim and M. P. Flynn, "A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2331-2341, Oct. 2015.

    Lim, JSSC 2015 (2)Y. Lim and M. P. Flynn, "A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 2901-2911, Dec. 2015.

    Lim, VLSI 2017Y. Lim and M. P. Flynn, "A calibration-free 2.3 mW 73.2 dB SNDR 15b 100 MS/s four-stage fully differential ring amplifier based SAR-assisted pipeline ADC," 2017 Symposium on VLSI Circuits, Kyoto, 2017, pp. C98-C99.

    Murmann, 2019B. Murmann, "ADC Performance Survey 1997-2019," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.

    Vaz, ISSCC 2017B. Vaz et al., "16.1 A 13b 4GS/s digitally assisted dynamic 3-stage asynchronous pipelined-SAR ADC," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 276-277.

    Wu, ISSCC 2016J. Wu et al., "A 4GS/s 13b pipelined ADC with capacitor and amplifier sharing in 16nm CMOS," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2016, pp. 466-467.

    Wu, VLSI 2013J. Wu et al., "A 5.4GS/s 12b 500mW pipeline ADC in 28nm CMOS," 2013 Symposium on VLSI Circuits, Kyoto, 2013, pp. C92-C93.