GALPROP tutorial Igor Moskalenko (Stanford U.). Igor V. Moskalenko 2 November 17, 2005GALPROP...

50
GALPROP tutorial Igor Moskalenko (Stanford U.)
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    230
  • download

    2

Transcript of GALPROP tutorial Igor Moskalenko (Stanford U.). Igor V. Moskalenko 2 November 17, 2005GALPROP...

GALPROP tutorial

Igor Moskalenko (Stanford U.)

Igor V. Moskalenko 2 November 17, 2005 GALPROP manual/Rome2, Italy

Obtaining GALPROP

The link:http://www.mpe.mpg.de/~aws/dlp/zxc/kty/v42.3p/

Contains c++, fortran routines & input files (dat-files, compass gas maps, and isrf)

Dedicated GALPROP Web-site will go online soon!

– Controlled changes in GALPROP: tests + documentation +…

– New version(s) + archive versions– Post relevant information: best models, gas maps, ISRF,

nuclear cross sections…– Allow for communication with users – Ability to run GALPROP on-line…

Igor V. Moskalenko 3 November 17, 2005 GALPROP manual/Rome2, Italy

I/O

galdef-filegas: COR, HIR, IAQ-filesRFComposite –(fits) file

dat-files (xsec, nuc.network)

GALPROP(c++ & fortran)

nuclei –(fits) file (R=Rsun)nuclei_full –(fits) file (whole galaxy)

γ-ray emissivities –(fits) files (brems, IC, π0)γ-ray skymaps –(fits) files (rings; brems, IC, π0)

FITS

GALDEF

v42.3

v42.3

FITS

sameleveldirs

Heliospheric modulation: on-the-fly in a plotting routine

Igor V. Moskalenko 4 November 17, 2005 GALPROP manual/Rome2, Italy

Example Makefile

#CXX = g++-2.95#FC = g77-2.95CFITSIO = ${GLAST_EXT}/cfitsio/v2470CPPFLAGS = -O3 -Wno-deprecated -I${CFITSIO}/includeFFLAGS =LIBS = -lm -lg2cFITSLIB = -L$(CFITSIO)/lib -lcfitsio -Wl, rpath,$(CFITSIO)/libLDFLAGS = $(FITSLIB) $(LIBS)FOBJS := $(patsubst %.f,%.o,$(wildcard *.f))CCOBJS := $(patsubst %.cc,%.o,$(wildcard *.cc))galprop: ${FOBJS} ${CCOBJS} $(CXX) *.o -o $@ ${LDFLAGS}

Igor V. Moskalenko 5 November 17, 2005 GALPROP manual/Rome2, Italy

Some Editing

Tested for g++ v2.9x compiler.New g++ compiler v3.x is more strict –routines require

some editing:

using namespace std;

#include<iostream>#include<cstdlib>#include<string>#include<cctype>#include<fstream>#include<cmath>

Igor V. Moskalenko 6 November 17, 2005 GALPROP manual/Rome2, Italy

GALPROP Input: galdef-files

GALPROP is parameter-driven (user can specify everything!)

Grids• 2D/3D –options; symmetry options (full 3D, 1/8 -quadrants)• Spatial, energy/momentum, latitude & longitude grids• Ranges: energy, R, x, y, z, latitude & longitude • Time steps

Propagation parameters

• Dxx, VA, VC & injection spectra (p,e)

• X-factors (including R-dependence)

Sources• Parameterized distributions• Known SNRs• Random SNRs (with given/random spectra), time dependent eq.Other• Source isotopic abundances, secondary particles (pbar , e±, γ,

synchro), anisotropic IC, energy losses, nuclear production cross sections…

Igor V. Moskalenko 7 November 17, 2005 GALPROP manual/Rome2, Italy

Algorithm

primary source functions (p, He, C .... Ni)source abundances, spectraprimary propagation -starting from maxA=64

source functions (Be, B...., e+,e-, pbars)using primaries and gas distributions secondary propagation

tertiary source functionstertiary propagation

-rays (IC, bremsstrahlung, πo-decay) radio: synchrotron

(i) CR –fixing propagation

(ii) γ-rays

Igor V. Moskalenko 8 November 17, 2005 GALPROP manual/Rome2, Italy

GALPROP Output/FITS files

Provides literally everything:• All nuclei and particle spectra in every grid point

(x,y,R,z,E) -FITS files

Separately for π0-decay, IC, bremsstrahlung:• Emissivities in every grid point

(x,y,R,z,E,process)• Skymaps with a given resolution (l,b,E,process)

• Output of maps separated into HI, H2, and rings to allow fitting X, metallicity gradient etc.

Igor V. Moskalenko 9 November 17, 2005 GALPROP manual/Rome2, Italy

Spatial Grids

Z

R,x,y0 1 2 3 4 5 6 7

1

-1

Typical grid steps (can be arbitrary!)Δz = 0.1 kpc, ΔΔz = 0.01 kpc (gas

averaging)ΔR = 1 kpcΔE = x1.2 (log-grid)

Igor V. Moskalenko 10 November 17, 2005 GALPROP manual/Rome2, Italy

GALPROP Calculations

Constraints• Bin size (x,y,z) depends on the computer speed, RAM; final run can be

done on a very fine grid ! • No other constraints ! –any required process/formalism can be

implemented

Calculations (γ -ray related)

Vectorization options Now 64 bit to allow unlimited arrays Heliospheric modulation: routinely force-field, more sophisticated

model ?1.For a given propagation parameters: propagate p, e, nuclei, secondaries

(currently in 2D)2.The propagated distributions are stored3.With propagated spectra: calculate the emissivities (π0-decay, IC,

bremss) in every grid point4.Integrate the emissivities over the line of sight: • GALPROP has a full 3D grid, but currently only 2D gas maps (H2, H I, H II)• Using actual annular maps (column density) at the final step• High latitudes above b=40˚ -using integrated H I distribution

Igor V. Moskalenko 11 November 17, 2005 GALPROP manual/Rome2, Italy

Dark Matter in GALPROP

DM annihilation products:χ0χ0−> p, pbar, e+, e−, γ

A set of routines (gen_DM_source.cc) to assign• The DM density profile (NFW, isothermal etc.)• Source functions for p, pbar, e+, e−

• Source function for γ’s• A set of user-defined parameters (10 int, 10

double precision) in galdef-file

DM annihilation products particles are propagated in the same model as CR particles.

Calculation of skymaps for DM γ-rays

Igor V. Moskalenko 12 November 17, 2005 GALPROP manual/Rome2, Italy

galdef_44_599278 -I

Igor V. Moskalenko 13 November 17, 2005 GALPROP manual/Rome2, Italy

galdef_44_599278 -II

Igor V. Moskalenko 14 November 17, 2005 GALPROP manual/Rome2, Italy

galdef_44_599278 -III

Igor V. Moskalenko 15 November 17, 2005 GALPROP manual/Rome2, Italy

galdef_44_599278 -IV

Igor V. Moskalenko 16 November 17, 2005 GALPROP manual/Rome2, Italy

Nuclear Reaction Network+Cross Sections

p,EC,p,EC,ββ++

ββ--, , nn

Be7 Be10

Al26

Cl36

Mn54

Plus some dozens of more complicated reactions.But many cross sections are not well known…

V49

Ca41

Cr51

Fe55Co57

Ar37

SecondarySecondary,,radioactive ~1 Myrradioactive ~1 Myr

& & K-captureK-capture isotopesisotopes

Igor V. Moskalenko 17 November 17, 2005 GALPROP manual/Rome2, Italy

Nuclear Reaction Network

III

I

II

IV

V

nuc_package.cc

Igor V. Moskalenko 18 November 17, 2005 GALPROP manual/Rome2, Italy

nuc_package.cc: Stable & Long-lived Isotopes

Igor V. Moskalenko 19 November 17, 2005 GALPROP manual/Rome2, Italy

nuc_package.cc: Long-Lived Isotopes

Igor V. Moskalenko 20 November 17, 2005 GALPROP manual/Rome2, Italy

nuc_package.cc: “Boundary” Nuclei

Igor V. Moskalenko 21 November 17, 2005 GALPROP manual/Rome2, Italy

isotope_cs_eval.dat

Igor V. Moskalenko 22 November 17, 2005 GALPROP manual/Rome2, Italy

Transport Equations ~90 (no. of CR Transport Equations ~90 (no. of CR species)species)

ψψ((rr,p,t),p,t) – – density per total momentum

df

Vpdt

dp

p

ppppDp

p

Vxx

D

prqt

tpr

3

1

22

][

),(),,(

sources (SNR, nuclear reactions…)sources (SNR, nuclear reactions…)

convectionconvectiondiffusiondiffusion

diffusive reaccelerationdiffusive reacceleration

E-lossE-loss convectionconvection

fragmentationfragmentation radioactive decayradioactive decay

Igor V. Moskalenko 23 November 17, 2005 GALPROP manual/Rome2, Italy

Finite Differencing

Igor V. Moskalenko 24 November 17, 2005 GALPROP manual/Rome2, Italy

Finite Differencing: Example

Igor V. Moskalenko 25 November 17, 2005 GALPROP manual/Rome2, Italy

Tri-Diagonal Matrix

Igor V. Moskalenko 26 November 17, 2005 GALPROP manual/Rome2, Italy

Coefficients for the Crank-Nicholson Method

Igor V. Moskalenko 27 November 17, 2005 GALPROP manual/Rome2, Italy

Near Future Developments

Full 3D Galactic structure:• 3D gas maps (from S.Digel, S.Hunter and/or smbd else)• 3D interstellar radiation & magnetic fields (A.Strong & T.Porter)Cross sections:• Blattnig et al. formalism for π0-production • Diffractive dissociation with scaling violation (T.Kamae –param.)• Isotopic cross sections (with S.Mashnik, LANL; try to motivate BNL,

JENDL-Japan, other Nuc. Data Centers)Modeling the local structure:• Local SNRs with known positions and ages• Local Bubble, local clouds –may be done at the final calculation

step (grid bin size ??)Energy range:• Extend toward sub-MeV range to compare with INTEGRAL diffuse

emission (continuum; 511 keV line)Heliospheric modulation:• Implementing a modern formalism (Potgieter, Zank etc.)Visualization tool (started) using the classes of CERN ROOT package:

images, profiles, and spectra from GALPROP to be directly compared with data

Improving the GALPROP module structure (for DM studies)

Igor V. Moskalenko 28 November 17, 2005 GALPROP manual/Rome2, Italy

More developments

Point sources: develop algorithm(s) for modeling the background and interface to the rest of GLAST software

Instrumental response: how to implement Diffuse emission analysis has to include point source catalog! At least, two diffuse models: with/without the “excess” Develop test case(s) to test the accuracy of the numerical

model (simple gas distribution, no energy losses, uniform ISRF etc.)

Complete C++ package: rewrite several fortran routines in C++

Develop a fitting procedure to make automatic fitting to B/C ratio, CR spectra and abundances

Develop a dedicated Web-site:– Controlled changes in GALPROP: tests +documentation +…– Allow for communication with users– Post relevant information: best models, gas maps, ISRF, nuclear

cross sections…– Ability to run GALPROP on-line…

Igor V. Moskalenko 29 November 17, 2005 GALPROP manual/Rome2, Italy

Fixing Propagation Parameters: Standard Way

Using secondary/primary nuclei ratio:•Diffusion coefficient and its index•Propagation mode and its

parameters (e.g., reacceleration VA,

convection Vz)

Radioactive isotopes:

Galactic halo size Zh Zh increase

B/C

Be10/Be9

Inte

rste

llar

Ek, MeV/nucleon

Ek, MeV/nucleon

Igor V. Moskalenko 30 November 17, 2005 GALPROP manual/Rome2, Italy

Peak in the Secondary/Primary Ratio

• Leaky-box model: fitting path-length distribution -> free function

B/C

• Diffusion models: Diffusive reacceleration Convection Damping of interstellar

turbulence Etc.

Accurate measurements in a wide energy range may help to distinguish between the models

EEkk, MeV/nucleon, MeV/nucleon

too sharp max?

Igor V. Moskalenko 31 November 17, 2005 GALPROP manual/Rome2, Italy

Distributed Stochastic Reacceleration

Fermi 2-nd order mechanism

BB

Scattering on magnetic turbulences Dpp~ p2Va

2/D

D ~ vR1/3 - Kolmogorov spectrum

Icr

E

strongreaccelerati

onweakreacceleration

ΔE

Simon et al. 1986Seo & Ptuskin

1994

1/3

Dxx = 5.2x1028 (R/3 GV)1/3cm-2 s-1

Va = 36 km s-1

γ ~ R-δ, δ=1.8/2.4 below/above 4 GV

Igor V. Moskalenko 32 November 17, 2005 GALPROP manual/Rome2, Italy

Convection

Galactic wind

Escape length

Xe

E

vR-0.6

wind orturbulentdiffusion

resonantdiffusion

Jones 1979

problem: too broad sec/prim peak

D~R0.

6

Dxx = 2.5x1028 (R/4 GV)0.6cm-2 s-1

dV/dz = 10 km s-1 kpc-1

γ ~ R-δ, δ=2.46/2.16 below/above 20 GV

Igor V. Moskalenko 33 November 17, 2005 GALPROP manual/Rome2, Italy

Damping of Interstellar Turbulence

p

l(p)

Iroshnikov-Kraichnan cascade:

Kolmogorov cascade:

W(k)

k

dissipation

1/1012cm1/1020cm

Simplified case:

• 1-D diffusion• No energy losses

Mean free path

nonlinearcascade

Ptuskin et al. 2003, 2005

Igor V. Moskalenko 34 November 17, 2005 GALPROP manual/Rome2, Italy

Dxx – Diffusion Coefficient

Plain diffusion

Diffusivereacceleration

Reaccelerationwith damping

~R0.6

~β-3

Igor V. Moskalenko 35 November 17, 2005 GALPROP manual/Rome2, Italy

• Positrons/electrons p+p->π,K->e± (MS 1998)– Dermer 1986 method: LE –Stecker Δ-isobar model (isotropic

decay), HE –scaling (inv. x-section: Stephens & Badhwar 1981), plus interpolation in between

– Pion decay “includes” polarization of muons– Kaon decay – scaling (Stephens & Badhwar 1981)

• Antiprotons (M et al. 2002)– pp Inclusive production x-section (Tan & Ng 1983)– pA, AA-> pbar –scaling using Gaisser & Schaeffer 1992 or

Simon et al. 1998 –results similar– Total inelastic x-section (p: TN’83, A: Moiseev & Ormes 1997)

– p+pbar annihilation x-section = (p+pbar)tot – (p+p)tot (LE: TN’83, HE: PDG’00 –Regge parameterization)

How It Is Really Done: Secondary Particles

Igor V. Moskalenko 36 November 17, 2005 GALPROP manual/Rome2, Italy

Elemental Abundances: CR vs. Solar System

CR abundances: ACE

Solar system abundances

LiBeB

CNO

F

Fe

ScTiV

CrMn

Si

Cl

Al

O

Na

S

“input”

“output”

Igor V. Moskalenko 37 November 17, 2005 GALPROP manual/Rome2, Italy

Fitting to Measured CR Abundances (ACE vs HEAO-3)

Fitting to measured CR abundances in the wide energy range (~0.1 – 30 GeV) is problematic: May indicate systematic or cross-calibration errors

Igor V. Moskalenko 38 November 17, 2005 GALPROP manual/Rome2, Italy

Total Nuclear Cross Sections

Ekin, MeV/nucleonWellisch & Axen 1996

Igor V. Moskalenko 39 November 17, 2005 GALPROP manual/Rome2, Italy

Isotopic Production Cross Sections of LiBeB

Semi-empirical systematics are not always correct.

Results obtained by different groups are often inconsistent and hard to test.

Very limited number of nuclear measurements:

Evaluating the cross section is very laborious and can’t be done without modern nuclear codes.

Use LANL nuclear database and modern computer codes.

Igor V. Moskalenko 40 November 17, 2005 GALPROP manual/Rome2, Italy

LiBeB: Major Production Channels

Propagated Abundance * Cross-sectionPropagated Abundance * Cross-section

Be B

C

Li

N

OLi6

79 10

1113

1514

•Well defined (65%):C12, O16 ->LiBeBN14 -> Be7

(see Moskalenko & Mashnik 28 ICRC, 2003)

•Few measurements:C13,N -> LiBeBB -> BeB

•Unknown:LiBeB,C13,N -> LiBeB

“Tertiary” reactions also important! -35%

12 16

A=

Igor V. Moskalenko 41 November 17, 2005 GALPROP manual/Rome2, Italy

Effect of Cross Sections: Radioactive Effect of Cross Sections: Radioactive SecondariesSecondaries

Different Different size from different ratios…size from different ratios…

Zhalo,kpc

STST

WW

2727Al+pAl+p2626AlAl

•ErrorsErrors in CR measurements (HE & LE) in CR measurements (HE & LE)•ErrorsErrors in production cross sections in production cross sections•ErrorsErrors in the lifetime estimates in the lifetime estimates•DifferentDifferent origin of elements (Local origin of elements (Local Bubble ?)Bubble ?)

natnatSi+pSi+p2626AlAl

WW

STST

TT1/21/2==??

Ek, MeV/nucleon

Igor V. Moskalenko 42 November 17, 2005 GALPROP manual/Rome2, Italy

How It Is Really Done: Nucleons

• Calculated for p+A reactions and scaled for α+A (Ferrando et al. 1988)

• Calculation of total nuclear cross sections– Letaw et al. 1983– Wellisch & Axen 1996 (corrected), Z>5– Barashenkov & Polanski 2001

• Calculation of isotopic production cross sections– Webber et al. 1993 (non-renormalized, renormalized); E>200

MeV/nucleon, essentially flat– Silberberg & Tsao 2000 (non-renormalized, renormalized); claim that

it works at all energies, but is problematic sometimes– Fits to the available data (LANL, Webber et al., etc.) in the form of a

function or a table (see .dat files), but data may not be always available

– Use the best of all three, but very time consuming work

• Nuclear reaction network– Nuclear Data Tables (includes several decay channels + branching)– Standard β± -decay, emission of p, n– K-capture isotopes can be treated separately

Igor V. Moskalenko 43 November 17, 2005 GALPROP manual/Rome2, Italy

Interstellar Gas

► Extend CO surveys to high latitudes– newly-found small molecular clouds will otherwise be interpreted as

unidentified sources, and clearly limit dark matter studies

► C18O observations (optically thin tracer) of special directions (e.g. Galactic center, arm tangents)

– assess whether velocity crowding is affecting calculations of molecular column density, and for carefully pinning down the diffuse emission

20

0

-20

-40

Gal

acti

c L

atit

ud

e

220 200 180 160 140 120 100 80 60 40 20 0

CfA 1.2mGalactic Longitude

Dam

e, H

artman

n, & T

haddeus (200

1)D

ame

& T

haddeus (20

04)

Igor V. Moskalenko 44 November 17, 2005 GALPROP manual/Rome2, Italy

Distribution of Interstellar Gas

• Neutral interstellar medium– 21-cm H I & 2.6-mm CO (stand in for H2)

• Near-far distance ambiguity, rotation curve, optical depth effects, …

Dame et al.(1987)

Hartmann &Burton (1997)

(25°, 0°)

W. Keel

CO

H IG.C.

25°

Seth Digel

Igor V. Moskalenko 45 November 17, 2005 GALPROP manual/Rome2, Italy

Seth Digel’05

Igor V. Moskalenko 46 November 17, 2005 GALPROP manual/Rome2, Italy

Gas Distribution

Sun

Molecular hydrogen H2 is traced using J=1-0 transition of 12CO, concentrated mostly in the plane (z~70 pc, R<10 kpc)

Atomic hydrogen H I (radio 21 cm) has a wider distribution (z~1 kpc, R~30 kpc)

Ionized hydrogen H II (visible, UV, X) small proportion, but exists even in halo (z~1 kpc)

Z=0,0.1,0.2 kpc

Igor V. Moskalenko 47 November 17, 2005 GALPROP manual/Rome2, Italy

Gas Rings: HI (Inner & Outer Galaxy)

Seth Digel’05

Igor V. Moskalenko 48 November 17, 2005 GALPROP manual/Rome2, Italy

Seth Digel’05

Gas Rings: HI (Our Neighborhood)

Igor V. Moskalenko 49 November 17, 2005 GALPROP manual/Rome2, Italy

• Bremsstrahlung (Koch & Motz 1959, SMR2000) –many different regimes:– LE: 0.01 < Ekin < 0.07 MeV –nonrelativistic non-screened brems– Intermediate: 0.07 < Ekin <2 MeV– HE: Ekin > 2 MeV arbitrary screening: unshielded charge, 1-, 2-

electron atoms (form factors, Hylleraas, Hertree-Fock wave functions)

– Fano-Sauter limit: k->Ekin • “Anisotropic” IC (MS2000)

– Takes into account the anisotropic angular distribution of background photons

• Neutral pion decay (see “secondary positrons/electrons”)• Synchrotron radiation (Ginzburg 1979, Ghisellini et al. 1988)

– Averaging over pitch angle– Uses total magnetic field (regular + random)

• Emissivities: uses “real” H2, H I gas column densities (“rings”)• Skymap calculations: integration over the line of sight

How It Is Really Done: Gammas

Igor V. Moskalenko 50 November 17, 2005 GALPROP manual/Rome2, Italy

Uncertainties in the Propagation Models

• Production cross sections of isotopes and pbarsTypical errors ~50%

Fitting to B/C ratio may introduce errors in Dxx

• Propagation models and parameters Gas distribution in the Galaxy

Ambient spectrum of CR (solar modulation, GeV excess in γ’s !) Current knowledge of CR diffusion

• Heliospheric modulation Depends on rigidity Similar for all nuclei A/Z~ +2

Different for protons A/Z=+1 and pbars A/Z=-1

• Systematic errors of measurementsDifficult to account for

Simultaneous measurements of Li, Be, B, C, secondary e+, p in a wide energy range ~100 MeV/nucleon – 100 GeV/nucleon are needed to understand CR propagation and distinguish between the models: looking forward to Pamela launch!

_