Fundamentals on ADCs-Part 1.2

download Fundamentals on ADCs-Part 1.2

of 19

Transcript of Fundamentals on ADCs-Part 1.2

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    1/19

    Texas A&M University 1 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Jose Silva-MartinezAmesp02.tamu.edu/~jsilva

    Technological issues

    January 2012

    Fundamentals oF analoG to dIGItalConVeRteRs: PaRt I.2

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    2/19

    Texas A&M University 2 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Well-Diffusion Resistor

    Example shows two long resistors for K range

    Alternatively, serpentine shapes can be used Noise problems from the body

    Substrate bias surrounding the well Substrate bias between the parallel strips

    Dummies

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    3/19

    Texas A&M University 3 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Factors affecting accuracy :

    Plastic packages cause a large pressure on the die (= 800 Atm.). It determines a variation of

    the resistivity.

    For material the variation is unisotropic, so the minimum is obtained if the resistancehave a 45o orientation.

    Temperature :

    Temperature gradient on thechip may produce thermalinduced mismatch.

    uncompensated

    compensated

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    4/19

    Texas A&M University 4 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Etching

    Wet etching : isotropic (undercut effect)

    HF for SiO2 ; H3PO4 for Al

    x for polysilicon may be 0.75 - 1 m with

    standard deviation 0.1 m.

    Reactive ion etching (R.I.E.)(plasma etching

    associated to bombardment) : unisotropic.

    x for polysilicon is 0.4 m with standard deviation 0.03 m

    Boundary :

    The etching depends on the

    boundary conditions

    Use dummy strips

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    5/19

    Texas A&M University 5 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Side diffusion effect : Contribution of endings

    Interdigitized structure :

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    6/19

    Texas A&M University 6 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    First polysilicon resistance

    First polysilicon resistance with a

    well shielding

    Second polysilicon resistance

    Second polysilicon resistance with a

    well shielding

    Poly Resistors

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    7/19Texas A&M University 7 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    7

    TYPES OF INTEGRATED CAPACITORS

    Electrodes : metal; polysilicon; diffusion

    Insulator : silicon oxide; polysilicon oxide; CVD oxide

    222

    ox

    ox

    2

    r

    r

    2

    W

    W

    L

    L

    t

    t

    C

    C

    +

    +

    +

    =

    WLt

    C

    ox

    ox

    =

    TOP VIEW

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    8/19Texas A&M University 8 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Factor affecting accuracy

    ox

    ox

    ox

    ox

    t

    t

    W

    W;

    L

    L

    Oxide damage

    Impurities

    Bias condition

    Bias history (for CVD)

    Stress

    Temperature

    Etching

    Alignment

    Grow rate

    Poly grain size

    222

    ox

    ox

    2

    r

    r

    2

    W

    W

    L

    L

    t

    t

    C

    C

    +

    +

    +

    =

    %1.01

    C

    C

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    9/19Texas A&M University 9 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    9

    Poly1 - Poly2 Capacitor

    Area is determined by poly2 Problems

    undercut effects nonuniform dielectric thickness matching among capacitorsMinimize the rings (inductors)

    Poly 2

    Poly 1

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    10/19Texas A&M University 10 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    10

    Accuracy of integrated capacitors

    Perimeter effects led the totalcapacitance:

    C = CA A

    A = (x-2x)(y- 2y)

    = (xy - 2xy - 2yx - 4x y)

    Assuming that x = y = e

    A = (xy - 2e(x + y) - 42e)

    A xy - 2e(x + y)

    Ce = - 2e(x + y)

    The relative error is

    = Ce/C= -2e(x + y) / xy

    Then maximize the area and minimize

    the perimeter use squares!!!

    x

    yx

    y

    CA = capacitance per unit are

    Real

    Area ofPoly 2

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    11/19Texas A&M University 11 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    11

    Unit capacitors are connected in

    parallel to form a larger

    capacitance

    Typically the ratio among

    capacitors is what matters

    The error in one capacitor isproportional to perimeter-area

    ratio

    Use dummies for better matching(See Johns & Martin Book, page112)

    Common Centroid Capacitor Layout

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    12/19Texas A&M University 12 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Common centroid structures

    C1

    TC1

    C5

    TC5

    C2

    TC2

    C3

    TC3

    C4

    TC4

    C2 = C1C3 = 2C1C4 = 4C1C5 = 8C1

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    13/19

    Texas A&M University 13 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Be aware of parasitic capacitors

    Polysilicon-Polysilicon: Bottom platecapacitance is comparable (10-30 %)with the poly-poly capacitance

    Metal1-Metal2: More clean, butthe capacitance per micrometersquare is smaller. Good option for

    very high frequency applications (C~ 0.1-0.3 pF).

    C1CP1 CP2

    CP2

    poly2

    poly1

    substrate

    CP1, CP2 are very small (1-5 % ofC1)CP2 is around 10-50 % of C1

    C1

    CP1CP2

    metal2

    metal1

    substrate

    Thick oxide

    C1

    CP1CP2

    Floating Capacitors

    CP2 is very small (1-5 % of C1)

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    14/19

    Texas A&M University 14 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    14

    Design example: Simplest OTA

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    15/19

    Texas A&M University 15 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    Overall amplifier: Have a look on the guard rings and additional deep well

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    16/19

    Texas A&M University 16 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    16BIAS: you may be able to see the dummies, symmetry and S/D connection

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    17/19

    Texas A&M University 17 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    17

    From downstairs

    Differential pair

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    18/19

    Texas A&M University 18 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

  • 8/3/2019 Fundamentals on ADCs-Part 1.2

    19/19

    Texas A&M University 19 Spring, 2012

    Fundamentals on ADCs: Part I Jose Silva-Martinez

    19

    Details on the P-type current mirrors