Finding Protection Cycles in DWDM Networks

21
Finding Protection Cycles in DWDM Networks 2002 IEEE ICC on Volume 5, 28 April-2 May Page(s): 2756-27 60 R eporter: Jyun-Yong Du

description

Finding Protection Cycles in DWDM Networks. 2002 IEEE ICC on Volume 5, 28 April-2 May Page(s): 2756-2760 Reporter: Jyun-Yong Du. Outline. Introduction P-cycle protection problem Classical ring finding methods A new protection cycle finding algorithm - PowerPoint PPT Presentation

Transcript of Finding Protection Cycles in DWDM Networks

Page 1: Finding Protection Cycles in DWDM Networks

Finding Protection Cycles in DWDM Networks

2002 IEEE ICC on Volume 5,28 April-2 May Page(s): 2756-2760 Reporter: Jyun-Yong Du

Page 2: Finding Protection Cycles in DWDM Networks

Outline

Introduction P-cycle protection problem Classical ring finding methods A new protection cycle finding algorithm Performance analyses Conclusions

Page 3: Finding Protection Cycles in DWDM Networks

Introduction(1/3)

Optical networks based on single physical ring are favored for their fast restoration (usually within 50ms).

The down side of single-ring-based networks is that they are bandwidth inefficient, since half of the total bandwidth has to be reserved for protection purpose.

Also self-healing ring technique is usually used in metro networks, it is impractical to cover all the switches in a long-haul network with a single ring.

Page 4: Finding Protection Cycles in DWDM Networks

Introduction(2/3)

On the other hand, mesh networks have a much higher link diversity which implies a lower bandwidth redundancy.

It is generally hard to find a protection path upon link failure and finish all the required optical cross-connects within 50ms before protocols in upper layers timeout.

As a compromised yet reasonable solution in practice, multiple logical rings can be chosen to cover the whole physical mesh networks; each of them behaves like a single physical self-healing ring by itself.

Page 5: Finding Protection Cycles in DWDM Networks

Introduction(3/3)

The approach of protecting mesh network with logical rings can be further categorized as follows:

1) Pure ring cover (intra-ring and inter-ring)

2) Protection cycle (P-cycle) cover This paper is aimed at introducing mesh optical

network logical ring cover problem in general, then proposing a new and efficient ring/cycle-finding algorithm in detail.

Page 6: Finding Protection Cycles in DWDM Networks

P-cycle protection problem(1/2)

The problem of protecting mesh networks by multiple ring/p-cycles, under the constraint of a limited number of wavelengths on each physical fiber link, is an NP-complete problem.

Hence, the authors propose to divide the whole problem into 2 independent sub-problems to reduce the complexity. Sub-problem #1: Ring finding. Sub-problem #2: Bandwidth planning.

Page 7: Finding Protection Cycles in DWDM Networks

P-cycle protection problem(2/2)

Sub-problem #2 is usually based on linear programming (LP).

There are various LP formulations for this sub-problem, based on their respective cost models.

Each bandwidth planning formulation addresses it’s own specific objective function.

This paper mainly focuses on sub-problem #1, i.e., to find a scalable, state-of-art ring/cycle finding algorithm.

Page 8: Finding Protection Cycles in DWDM Networks

Classical ring finding methods(1/2)

There are various ring finding algorithms, some of them are classical methods that can select all the rings exhaustively from a network (graph).

The classical algorithms belong to one of the following four classes:

1) Circuit vector space [6,8,9]

2) Backtracking algorithms [6,7,10]

3) Powers of adjacency matrix [6]

4) Edge-digraph [6]

Page 9: Finding Protection Cycles in DWDM Networks

Classical ring finding methods(2/2)

In addition to classical methods, which are exhaustive, there is another category of ring-finding methods based on heuristics, such as:

1) Ring node routing [12]

2) Incapacitated ring cover [13]

3) Node disjoint routing [11] The heuristics can run faster than classical methods an

d yield good node/link coverage in most cases.

Page 10: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(1/10) It has been proved theoretically [15,16,17] that in

network protection, p-cycle topology is more efficient than any other topology patterns, such as trees and line segments, in the sense that p-cycle provides more protection paths per unit spare capacity consumed.

As the authors have found from classical ring-finding algorithms introduced before, the number of rings/cycles in a graph/network increases exponentially, as the number of network nodes and links increases.

Page 11: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(2/10) Here, the authors propose a scalable algorithm based on

the idea of cycle straddling link. Such a new idea is based on the following observation: a

p-cycle could be looked on as the combination of two node-disjoint paths between the two end nodes of a cycle-straddling link.

Page 12: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(3/10) Given a general mesh network G=G(V,E) Before finding a set of p-cycle covering the network links,

we can always first prune off those nodes of nodal degree 1 and the links adjacent to them, because no cycle could cover such nodes.

Upon looking at the remaining links for p-cycle finding purposes, we can identify the following cases:

Page 13: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(4/10)1) Case of node degrees>=3 for both end nodes: there

are 3 sub-cases

Page 14: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(5/10)2) Case of the node degree of at least one end node=2:

there are 2 sub-cases

Page 15: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(6/10)

Page 16: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(7/10)

Page 17: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(8/10)

Page 18: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(9/10)

Page 19: Finding Protection Cycles in DWDM Networks

A new protection cycle finding algorithm(10/10)

Page 20: Finding Protection Cycles in DWDM Networks

Performance analyses

Page 21: Finding Protection Cycles in DWDM Networks

Conclusions

To solve the scalability problem in sub-problem #1 (ring finding), the authors proposed the straddling link ring finding algorithm

The algorithm has the feature that the number of p-cycles found does not exceed the number of links in the network.

At the same time the resultant p-cycle set covers most network links which has been confirmed by the simulation results.