Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO -...

18
Electromagnetic Simulation of Unconventional Resonant Cavities for Magnetoplasmas AUTHORS: C. S. GALLO (INFN-LNL / FERRARA UNIVERSITY), A. GALATÀ (INFN-LNL), O. LEONARDI (INFN-LNS), G.TORRISI (INFN-LNS), G. S. MAURO (INFN-LNS / REGGIO CALABRIA UNIVERSITY), G. SORBELLO (INFN-LNS / CATANIA UNIVERSITY), D. MASCALI (INFN-LNS) Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Transcript of Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO -...

Page 1: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

Electromagnetic Simulation of Unconventional Resonant Cavities for Magnetoplasmas

AUTHORS: C. S. GALLO (INFN-LNL / FERRARA UNIVERSITY), A. GALATÀ (INFN-LNL),O. LEONARDI ( INFN-LNS),G.TORRISI ( INFN-LNS),G. S. MAURO (INFN-LNS / REGGIO CALABRIA UNIVERSITY),G. SORBELLO (INFN-LNS / CATANIA UNIVERSITY),D. MASCALI ( INFN-LNS)

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Page 2: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 2

Outline

1. Introduction to ECR;

2. Unconventional resonant cavities for magnetoplasmas of ECRIS;

3. Case study;

4. Systems simulations;

5. Results;

6. Conclusion.

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Page 3: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 3

Introduction of ECRIS

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

B-mininum structure for electrons and ions confinement.

Magnetic mirror for axial confinement

Page 4: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 4

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Introduction of ECRIS

Two Close Frequency Heating

Two Frequency Heating

Techniques to increase the ECR ion source performances

CAPRICE source @ GSI*Frequency Tuning*

...

)(2

3

processecompetitivBB

wallchamberplasmaonBB

possibleifmoreorBB

radext

ECRrad

ECRinj

12 − MI

)log( 5.1Bqopt

➢ 1987 Geller’s scaling laws:

➢ 1990 High B-mode concept (Ciavola & Gammino)

➢ 2000 ECRIS standard model

It doesn’t conflict with Scaling Laws, but itlimits their efficiency to high confinedplasmas 14GHz, 18 GHz, 28GHz confirmations

2max ECRB

B

Magnetic system and frequency roles

*G. Ciavola et al., proc. EPAC08 *L. Celona et al., Rev. Sci. Instrum. 79, 023305 (2008).

SUPERNANOGAN @ CNAO*

Page 5: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 5

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Unconventional resonant cavities for magnetoplasmas of ECRIS

Maximization of the electromagnetic power absorption in specific zones on the resonance surface from which ions are extracted.

Alternative approach

Electromagnetic study to optimizethe geometry of the plasma chamber

Boost of the ion source performances for the same input microwave power!!

Page 6: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 6

Case study

Produce heavy ion beams in a very wide range of mass:from hydrogen to lead

CAESAR Source @ INFN-LNS

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Evolution of Xe20+

Operational parameters of the CAESAR Source

Page 7: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 7

Case study

Current CAESAR cavity

Resonance cavity

Plasma

Cavity dimensions: φ = 63.5 mm;L = 200.0 mm

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

The working frequency, after frequency tuning, is: f = 14.5 GHz

Aluminium cylinder

Injection hole

Extraction hole

Extraction system

RF Injection

Page 8: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 8

Solution of the wave equation

Full anisotropic dielectric tensor for magnetized Inhomogeneous and anisotropic plasma computed in

Solution of Maxwell’s equations in

Electromagnetic field in ECRIS Plasma

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Systems simulations: numerical approach

Plasmoid/halo structure Fully 3D dielectric tensor𝑛ℎ𝑎𝑙𝑜 = 2.5 ∗ 1015𝑚−3

𝑛𝑝𝑙𝑎𝑠𝑚𝑜𝑖𝑑 = 2.5 ∗ 1017𝑚−3

Page 9: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 9

Modification of the plasma chamber geometry

CAESAR plasma chamber

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Systems simulations: geometry

The maximum element of the mesh size was set to 1,75 mm (about Τλ0 6)

Innovative “star-shaped” geometry: IRIS

Reflects the shape of the plasma due to the magnetic structure

Mesh definition in COMSOL

The lossy cavity walls are modelled via the appropriate “impedance boundary condition.”

Italian patent pending n. 102020000001756

Page 10: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 10

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Systems simulations: results

First step: Eigenmode solver

fTM0,3,8 = 14.053 GHz

Electric field

10 ∗ 𝑙𝑜𝑔10 𝐸

Electric field10 ∗ 𝑙𝑜𝑔10 𝐸

fTM2,2,9 = 14.022 GHz

Modification of the plasma chamber geometry

CAESAR plasma chamber Innovative “star-shaped” geometry: IRIS

Page 11: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 11

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

CAESAR plasma chamber Innovative “star-shaped” geometry: IRIS

Power (100 W) for bothwaveguides @ 14 GHz

Second step: Frequency domain solver in vacuum

Modification of the plasma chamber geometry

Systems simulations: results

Page 12: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 12

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

-14

-12

-10

-8

-6

-4

-2

0

14,00 14,25 14,50 14,75 15,00 15,25 15,50 15,75 16,00

S11

[d

B]

Frequency [GHz]

S11 vs frequency

IRIS

CAESAR

S11 on the WR62 waveguide input

As can be seen, in the case of IRIS, microwaves are better matched to the cavity in almost all the considered frequency range.

Systems simulations: coupling

Page 13: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 13

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Systems simulations: implementation of a plasma

Meshing the integration domain:tetrahedrons size is reduced in the proximity of the ECR surface, accounting for resonance. The maximum element of the mesh size was set to 1,75 mm (about Τλ0 6). The minimum as set to Τλ0 10.

The inner cavity volume is filled by lossyplasma characterized by dielectric tensor.

The lossy cavity walls are modelled via the appropriate “impedance boundary condition.”

𝑛ℎ𝑎𝑙𝑜 = 2.5 ∗ 1015𝑚−3

𝑛𝑝𝑙𝑎𝑠𝑚𝑜𝑖𝑑 = 2.5 ∗ 1017𝑚−3

Third step: Frequency domain solver in presence of a plasma

Modification of the plasma chamber geometry

Fully 3D dielectric tensor

Plasmoid/halo structure

Page 14: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 14

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Systems simulations: results with plasma

Electric field distribution

CAESAR plasma chamber Innovative “star-shaped” geometry: IRIS

For both cases, the intensification of the electric field at the resonance is clearly visible, but for the IRIS geometry the area where this effect takes place is much wider.

Third step: Frequency domain solver in presence of a plasma

Modification of the plasma chamber geometryPower (100 W) for bothwaveguides @ 14 GHz

Electric field distribution

Resonances Resonances

Page 15: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 15

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Calculations of the|S11| in the presence of a magnetized plasma show an even more evident improvement by employing the proposed new geometry IRIS.

Systems simulations: coupling with plasma

-45

-40

-35

-30

-25

-20

-15

-10

-5

14,00 14,25 14,50 14,75 15,00 15,25 15,50 15,75 16,00

S11

[d

b]

Frequency [GHz]

S11 vs frequency

IRIS

CAESAR

S11 on the WR62 waveguide input

Page 16: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16

Laboratori Nazionali di Legnaro Laboratori Nazionali del SudPower absorption from the plasma

The power absorption is calculated through the volume integral of the total dissipated power inside the chamber.

Systems simulations: power absorption

40

50

60

70

80

90

100

14,00 14,25 14,50 14,75 15,00 15,25 15,50 15,75 16,00

Pow

er [

%]

Frequency [GHz]

Power dissipated in the volume vs frequency

IRIS

CAESAR

The results show that the IRIS geometry produces a higher and almost flat power absorption coefficient over a wide frequency range around the CAESAR operating frequency. This could translate in an easier tunability and higher flexibility of the ion source.

Operating CAESAR frequency @ 14.5 GHz

Operating CAESAR range frequency

Page 17: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 17

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Conclusion

We presented an electromagnetic study of an unconventional resonant cavity for magnetically confined plasmas whose performances have been compared with the classical cylindrical geometry of the CAESAR ion source,

installed at INFN-LNS.

The design study has been completed and now we are in the engineering phase, which is considering Additive Manufacturing for the realization of a first prototype: tests on materials and first items will start soon at INFN-LNS

The proposed could boost the ion source performances and increase its flexibility by:

Coupling a higher microwave power to the plasma.

Ensure a high microwave power absorption in a wider frequency range.

Page 18: Electromagnetic Simulation of Unconventional Resonant ......8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 16 Laboratori Nazionali di Legnaro Power absorption from the plasma Laboratori

8/12/2020 CARMELO SEBASTIANO GALLO - INFN LNL 18

Laboratori Nazionali di Legnaro Laboratori Nazionali del Sud

Thank You for your attention!